Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 9 |
Descriptor
| Bayesian Statistics | 9 |
| Effect Size | 9 |
| Regression (Statistics) | 9 |
| Meta Analysis | 4 |
| Research Design | 4 |
| Computation | 3 |
| Intervention | 3 |
| Markov Processes | 3 |
| Monte Carlo Methods | 3 |
| Comparative Analysis | 2 |
| Correlation | 2 |
| More ▼ | |
Source
| Grantee Submission | 3 |
| Research Synthesis Methods | 2 |
| Society for Research on… | 2 |
| Applied Psychological… | 1 |
| Educational and Psychological… | 1 |
Author
| Moeyaert, Mariola | 2 |
| Akhmedjanova, Diana | 1 |
| Beretvas, S. Natasha | 1 |
| Betsy Wolf | 1 |
| Chu, Haitao | 1 |
| Dai, Yunyun | 1 |
| Ferron, John | 1 |
| Geuke, Gemma | 1 |
| Jiang, Kaifeng | 1 |
| Jiao, Hong | 1 |
| Karabatsos, George | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 8 |
| Journal Articles | 4 |
| Information Analyses | 1 |
| Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Betsy Wolf – Society for Research on Educational Effectiveness, 2021
The What Works Clearinghouse (WWC) seeks to provide practitioners information about "what works in education." One challenge in understanding "what works" to practitioners is that effect sizes--the degree to which an intervention produces positive (or negative) outcomes--are not comparable across different interventions, in…
Descriptors: Effect Size, Outcome Measures, Intervention, Educational Research
Shi, Linyu; Chu, Haitao; Lin, Lifeng – Research Synthesis Methods, 2020
Publication bias threatens meta-analysis validity. It is often assessed via the funnel plot; an asymmetric plot implies small-study effects, and publication bias is one cause of the asymmetry. Egger's regression test is a widely used tool to quantitatively assess such asymmetry. It examines the association between the observed effect sizes and…
Descriptors: Bayesian Statistics, Meta Analysis, Effect Size, Publications
Moeyaert, Mariola; Akhmedjanova, Diana; Ferron, John; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The methodology of single-case experimental designs (SCED) has been expanding its efforts toward rigorous design tactics to address a variety of research questions related to intervention effectiveness. Effect size indicators appropriate to quantify the magnitude and the direction of interventions have been recommended and intensively studied for…
Descriptors: Effect Size, Research Methodology, Research Design, Hierarchical Linear Modeling
Miocevic, Milica; Klaassen, Fayette; Geuke, Gemma; Moeyaert, Mariola; Maric, Marija – Grantee Submission, 2020
Single-Case Experimental Designs (SCEDs) have lately been recognized as a valuable alternative tolarge group studies. SCEDs form a great tool for the evaluation of treatment effectiveness in heterogeneous and low-incidence conditions, which are common in the field of communication disorders. Mediation analysis is indispensable in treatment…
Descriptors: Bayesian Statistics, Computation, Intervention, Case Studies
Zhang, Zhiyong; Jiang, Kaifeng; Liu, Haiyan; Oh, In-Sue – Grantee Submission, 2018
To answer the call of introducing more Bayesian techniques to organizational research (e.g., Kruschke, Aguinis, & Joo, 2012; Zyphur & Oswald, 2013), we propose a Bayesian approach for meta-analysis with power prior in this article. The primary purpose of this method is to allow meta-analytic researchers to control the contribution of each…
Descriptors: Bayesian Statistics, Meta Analysis, Correlation, Statistical Analysis
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G. – Research Synthesis Methods, 2015
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…
Descriptors: Bayesian Statistics, Meta Analysis, Prediction, Nonparametric Statistics
Li, Tongyun; Jiao, Hong; Macready, George B. – Educational and Psychological Measurement, 2016
The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…
Descriptors: Item Response Theory, Psychometrics, Test Construction, Monte Carlo Methods
Dai, Yunyun – Applied Psychological Measurement, 2013
Mixtures of item response theory (IRT) models have been proposed as a technique to explore response patterns in test data related to cognitive strategies, instructional sensitivity, and differential item functioning (DIF). Estimation proves challenging due to difficulties in identification and questions of effect size needed to recover underlying…
Descriptors: Item Response Theory, Test Bias, Computation, Bayesian Statistics
Society for Research on Educational Effectiveness, 2013
One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…
Descriptors: Research Design, Effect Size, Intervention, Statistical Analysis

Peer reviewed
Direct link
