NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 1 to 15 of 82 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beth Chance; Karen McGaughey; Sophia Chung; Alex Goodman; Soma Roy; Nathan Tintle – Journal of Statistics and Data Science Education, 2025
"Simulation-based inference" is often considered a pedagogical strategy for helping students develop inferential reasoning, for example, giving them a visual and concrete reference for deciding whether the observed statistic is unlikely to happen by chance alone when the null hypothesis is true. In this article, we highlight for teachers…
Descriptors: Simulation, Sampling, Randomized Controlled Trials, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
William Herbert Yeaton – International Journal of Research & Method in Education, 2024
Though previously unacknowledged, a SMART (Sequential Multiple Assignment Randomized Trial) design uses both regression discontinuity (RD) and randomized controlled trial (RCT) designs. This combination structure creates a conceptual symbiosis between the two designs that enables both RCT- and previously unrecognized, RD-based inferential claims.…
Descriptors: Research Design, Randomized Controlled Trials, Regression (Statistics), Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Timo Gnambs; Ulrich Schroeders – Research Synthesis Methods, 2024
Meta-analyses of treatment effects in randomized control trials are often faced with the problem of missing information required to calculate effect sizes and their sampling variances. Particularly, correlations between pre- and posttest scores are frequently not available. As an ad-hoc solution, researchers impute a constant value for the missing…
Descriptors: Accuracy, Meta Analysis, Randomized Controlled Trials, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L.; Zhang, Bixi; Li, Xintong – Journal of Research on Educational Effectiveness, 2023
Binary outcomes are often analyzed in cluster randomized trials (CRTs) using logistic regression and cluster robust standard errors (CRSEs) are routinely used to account for the dependent nature of nested data in such models. However, CRSEs can be problematic when the number of clusters is low (e.g., < 50) and, with CRTs, a low number of…
Descriptors: Robustness (Statistics), Error of Measurement, Regression (Statistics), Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Robert B. Olsen; Larry L. Orr; Stephen H. Bell; Elizabeth Petraglia; Elena Badillo-Goicoechea; Atsushi Miyaoka; Elizabeth A. Stuart – Journal of Research on Educational Effectiveness, 2024
Multi-site randomized controlled trials (RCTs) provide unbiased estimates of the average impact in the study sample. However, their ability to accurately predict the impact for individual sites outside the study sample, to inform local policy decisions, is largely unknown. To extend prior research on this question, we analyzed six multi-site RCTs…
Descriptors: Accuracy, Predictor Variables, Randomized Controlled Trials, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Paul Thompson; Kaydee Owen; Richard P. Hastings – International Journal of Research & Method in Education, 2024
Traditionally, cluster randomized controlled trials are analyzed with the average intervention effect of interest. However, in populations that contain higher degrees of heterogeneity or variation may differ across different values of a covariate, which may not be optimal. Within education and social science contexts, exploring the variation in…
Descriptors: Randomized Controlled Trials, Intervention, Mathematics Education, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Edoardo G. Ostinelli; Orestis Efthimiou; Yan Luo; Clara Miguel; Eirini Karyotaki; Pim Cuijpers; Toshi A. Furukawa; Georgia Salanti; Andrea Cipriani – Research Synthesis Methods, 2024
When studies use different scales to measure continuous outcomes, standardised mean differences (SMD) are required to meta-analyse the data. However, outcomes are often reported as endpoint or change from baseline scores. Combining corresponding SMDs can be problematic and available guidance advises against this practice. We aimed to examine the…
Descriptors: Network Analysis, Meta Analysis, Depression (Psychology), Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Miratrix, Luke W.; Weiss, Michael J.; Henderson, Brit – Journal of Research on Educational Effectiveness, 2021
Researchers face many choices when conducting large-scale multisite individually randomized control trials. One of the most common quantities of interest in multisite RCTs is the overall average effect. Even this quantity is non-trivial to define and estimate. The researcher can target the average effect across individuals or sites. Furthermore,…
Descriptors: Computation, Randomized Controlled Trials, Error of Measurement, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Deke, John; Wei, Thomas; Kautz, Tim – Journal of Research on Educational Effectiveness, 2021
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts may…
Descriptors: Intervention, Program Evaluation, Sample Size, Randomized Controlled Trials
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Bloom, Howard; Bell, Andrew; Reiman, Kayla – Journal of Research on Educational Effectiveness, 2020
This article assesses the likely generalizability of educational treatment-effect estimates from regression discontinuity designs (RDDs) when treatment assignment is based on academic pretest scores. Our assessment uses data on outcome and pretest measures from six educational experiments, ranging from preschool through high school, to estimate…
Descriptors: Data Use, Randomized Controlled Trials, Research Design, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Prediger, Susanne; Erath, Kirstin; Weinert, Henrike; Quabeck, Kim – Journal for Research in Mathematics Education, 2022
Empirical evidence exists that enhancing students' language can promote the mathematics learning of multilingual students at risk, whereas other target groups (e.g., monolingual students, successful students, both with diverse academic language proficiency) have hardly been considered. This cluster-randomized controlled trial (N = 589)…
Descriptors: Language Usage, Mathematics Instruction, Randomized Controlled Trials, Multilingualism
Steiner, Peter M.; Kim, Yongnam; Hall, Courtney E.; Su, Dan – Sociological Methods & Research, 2017
Randomized controlled trials (RCTs) and quasi-experimental designs like regression discontinuity (RD) designs, instrumental variable (IV) designs, and matching and propensity score (PS) designs are frequently used for inferring causal effects. It is well known that the features of these designs facilitate the identification of a causal estimand…
Descriptors: Graphs, Causal Models, Quasiexperimental Design, Randomized Controlled Trials
Thoemmes, Felix; Liao, Wang; Jin, Ze – Journal of Educational and Behavioral Statistics, 2017
This article describes the analysis of regression-discontinuity designs (RDDs) using the R packages rdd, rdrobust, and rddtools. We discuss similarities and differences between these packages and provide directions on how to use them effectively. We use real data from the Carolina Abecedarian Project to show how an analysis of an RDD can be…
Descriptors: Regression (Statistics), Research Design, Robustness (Statistics), Computer Software
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6