Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 13 |
Descriptor
Source
| Structural Equation Modeling:… | 3 |
| Grantee Submission | 2 |
| ProQuest LLC | 2 |
| Research Synthesis Methods | 2 |
| Large-scale Assessments in… | 1 |
| Measurement:… | 1 |
| Physical Review Physics… | 1 |
| Practical Assessment,… | 1 |
Author
| Aimel Zafar | 1 |
| Augustin Kelava | 1 |
| Coletta, Vincent P. | 1 |
| Daniel Seddig | 1 |
| David Kaplan | 1 |
| Doucouliagos, Hristos | 1 |
| Erin W. Post | 1 |
| Frederick L. Oswald | 1 |
| Furukawa, Toshi A. | 1 |
| Gelman, Andrew | 1 |
| Gosho, Masahiko | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 11 |
| Reports - Research | 7 |
| Dissertations/Theses -… | 2 |
| Reports - Evaluative | 2 |
| Information Analyses | 1 |
| Reports - Descriptive | 1 |
Education Level
| High Schools | 2 |
| Higher Education | 2 |
| Postsecondary Education | 2 |
| Secondary Education | 2 |
Audience
Location
| Europe | 1 |
| Iowa | 1 |
| United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 1 |
| SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Karyssa A. Courey; Frederick L. Oswald; Steven A. Culpepper – Practical Assessment, Research & Evaluation, 2024
Historically, organizational researchers have fully embraced frequentist statistics and null hypothesis significance testing (NHST). Bayesian statistics is an underused alternative paradigm offering numerous benefits for organizational researchers and practitioners: e.g., accumulating direct evidence for the null hypothesis (vs. 'fail to reject…
Descriptors: Bayesian Statistics, Statistical Distributions, Researchers, Institutional Research
Rebeka Man – ProQuest LLC, 2024
In today's era of large-scale data, academic institutions, businesses, and government agencies are increasingly faced with heterogeneous datasets. Consequently, there is a growing need to develop effective methods for extracting meaningful insights from this type of data. Quantile, expectile, and expected shortfall regression methods offer useful…
Descriptors: Data, Data Analysis, Data Use, Higher Education
Aimel Zafar; Manzoor Khan; Muhammad Yousaf – Measurement: Interdisciplinary Research and Perspectives, 2024
Subjects with initially extreme observations upon remeasurement are found closer to the population mean. This tendency of observations toward the mean is called regression to the mean (RTM) and can make natural variation in repeated data look like real change. Studies, where subjects are selected on a baseline criterion, should be guarded against…
Descriptors: Measurement, Regression (Statistics), Statistical Distributions, Intervention
Erin W. Post – ProQuest LLC, 2024
Multivariate count data is ubiquitous in many areas of research including the physical, biological, and social sciences. These data are traditionally modeled with the Dirichlet Multinomial distribution (DM). A new, more flexible Dirichlet-Tree Multinomial (DTM) model is gaining in popularity. Here, we consider Bayesian DTM regression models. Our…
Descriptors: Regression (Statistics), Multivariate Analysis, Statistical Distributions, Bayesian Statistics
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Stanley, T. D.; Doucouliagos, Hristos – Research Synthesis Methods, 2023
Partial correlation coefficients are often used as effect sizes in the meta-analysis and systematic review of multiple regression analysis research results. There are two well-known formulas for the variance and thereby for the standard error (SE) of partial correlation coefficients (PCC). One is considered the "correct" variance in the…
Descriptors: Correlation, Statistical Bias, Error Patterns, Error Correction
Ke-Hai Yuan; Yongfei Fang – Grantee Submission, 2023
Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and…
Descriptors: Structural Equation Models, Regression (Statistics), Weighted Scores, Comparative Analysis
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Coletta, Vincent P. – Physical Review Physics Education Research, 2023
Recently Burkholder "et al." argued that class normalized gains over the entire population of courses is approximated by a Cauchy distribution, not by a normal distribution, and therefore should not be used to compare different classes because means and standard deviations cannot be calculated. They argued that multiple linear regression…
Descriptors: Physics, Science Instruction, Scientific Concepts, Concept Formation

Peer reviewed
Direct link
