NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 65 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jesper Dannath; Alina Deriyeva; Benjamin Paaßen – International Educational Data Mining Society, 2025
Research on the effectiveness of Intelligent Tutoring Systems (ITSs) suggests that automatic hint generation has the best effect on learning outcomes when hints are provided on the level of intermediate steps. However, ITSs for programming tasks face the challenge to decide on the granularity of steps for feedback, since it is not a priori clear…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Smitha S. Kumar; Michael A. Lones; Manuel Maarek; Hind Zantout – ACM Transactions on Computing Education, 2025
Programming demands a variety of cognitive skills, and mastering these competencies is essential for success in computer science education. The importance of formative feedback is well acknowledged in programming education, and thus, a diverse range of techniques has been proposed to generate and enhance formative feedback for programming…
Descriptors: Automation, Computer Science Education, Programming, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Maximiliano Paredes-Velasco; Isaac Lozano-Osorio; Diana Perez-Marin; Liliana Patricia Santacruz-Valencia – IEEE Transactions on Learning Technologies, 2024
Teaching programming is a topic that has generated a high level of interest among researchers in recent decades. In particular, multiple approaches to teaching visual programming have been explored, from the use of tools such as Scratch, robots, unplugged programming, or activities for the development of computational thinking. Despite the wide…
Descriptors: Visual Aids, Programming, Intelligent Tutoring Systems, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Manuel B. Garcia – Education and Information Technologies, 2025
The emergence of generative AI tools like ChatGPT has sparked investigations into their applications in teaching and learning. In computer programming education, efforts are underway to explore how this tool can enhance instructional practices. Despite the growing literature, there is a lack of synthesis on its use in this field. This rapid review…
Descriptors: Computer Science Education, Teaching Methods, Programming, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sirinda Palahan – IEEE Transactions on Learning Technologies, 2025
The rise of online programming education has necessitated more effective personalized interactions, a gap that PythonPal aims to fill through its innovative learning system integrated with a chatbot. This research delves into PythonPal's potential to enhance the online learning experience, especially in contexts with high student-to-teacher ratios…
Descriptors: Programming, Computer Science Education, Artificial Intelligence, Computer Mediated Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Guozhu Ding; Xiangyi Shi; Shan Li – Education and Information Technologies, 2024
In this study, we developed a classification system of programming errors based on the historical data of 680,540 programming records collected on the Online Judge platform. The classification system described six types of programming errors (i.e., syntax, logical, type, writing, misunderstanding, and runtime errors) and their connections with…
Descriptors: Programming, Computer Science Education, Classification, Graphs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sychev, Oleg; Penskoy, Nikita; Anikin, Anton; Denisov, Mikhail; Prokudin, Artem – Education Sciences, 2021
Intelligent tutoring systems have become increasingly common in assisting students but are often aimed at isolated subject-domain tasks without creating a scaffolding system from lower- to higher-level cognitive skills, with low-level skills often neglected. We designed and developed an intelligent tutoring system, CompPrehension, which aims to…
Descriptors: Intelligent Tutoring Systems, Comprehension, Undergraduate Students, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Vesin, Boban; Mangaroska, Katerina; Akhuseyinoglu, Kamil; Giannakos, Michail – ACM Transactions on Computing Education, 2022
Online learning systems should support students preparedness for professional practice by equipping them with the necessary skills while keeping them engaged and active. In that regard, the development of online learning systems that support students' development and engagement with programming is a challenging process. Early career computer…
Descriptors: Adaptive Testing, Online Courses, Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
David Roldan-Alvarez; Francisco J. Mesa – IEEE Transactions on Education, 2024
Artificial intelligence (AI) in programming teaching is something that still has to be explored, since in this area assessment tools that allow grading the students work are the most common ones, but there are not many tools aimed toward providing feedback to the students in the process of creating their program. In this work a small sized…
Descriptors: Intelligent Tutoring Systems, Grading, Artificial Intelligence, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Xuanyan Zhong; Zehui Zhan – Interactive Technology and Smart Education, 2025
Purpose: The purpose of this study is to develop an intelligent tutoring system (ITS) for programming learning based on information tutoring feedback (ITF) to provide real-time guidance and feedback to self-directed learners during programming problem-solving and to improve learners' computational thinking. Design/methodology/approach: By…
Descriptors: Intelligent Tutoring Systems, Computer Science Education, Programming, Independent Study
Zeyad Alshaikh – ProQuest LLC, 2021
Programming skills are a vital part of many disciplines but can be challenging to teach and learn. Thus, the programming courses are considered difficult and a major stumbling block. To overcome these challenges, students could benefit from extensive individual support such as tutoring, but there are simply not enough qualified tutors available to…
Descriptors: Questioning Techniques, Teaching Methods, Intelligent Tutoring Systems, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Efremov, Aleksandr; Ghosh, Ahana; Singla, Adish – International Educational Data Mining Society, 2020
Intelligent tutoring systems for programming education can support students by providing personalized feedback when a student is stuck in a coding task. We study the problem of designing a hint policy to provide a next-step hint to students from their current partial solution, e.g., which line of code should be edited next. The state of the art…
Descriptors: Intelligent Tutoring Systems, Feedback (Response), Computer Science Education, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5