Publication Date
| In 2026 | 0 |
| Since 2025 | 58 |
| Since 2022 (last 5 years) | 270 |
| Since 2017 (last 10 years) | 647 |
| Since 2007 (last 20 years) | 1124 |
Descriptor
| Problem Solving | 1541 |
| Engineering Education | 1124 |
| Engineering | 473 |
| Teaching Methods | 454 |
| Foreign Countries | 386 |
| Design | 310 |
| Higher Education | 304 |
| Undergraduate Students | 279 |
| Science Education | 224 |
| Student Attitudes | 217 |
| College Students | 215 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Teachers | 121 |
| Practitioners | 97 |
| Students | 11 |
| Researchers | 8 |
| Parents | 3 |
| Policymakers | 3 |
| Administrators | 2 |
Location
| Australia | 31 |
| Turkey | 25 |
| South Africa | 24 |
| Spain | 18 |
| Malaysia | 17 |
| Sweden | 17 |
| Canada | 16 |
| India | 14 |
| Taiwan | 14 |
| United States | 14 |
| Germany | 13 |
| More ▼ | |
Laws, Policies, & Programs
| Carl D Perkins Vocational and… | 1 |
| Carl D Perkins Vocational and… | 1 |
| Individuals with Disabilities… | 1 |
| School to Work Opportunities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Peer reviewedCase, Jennifer; Gunstone, Richard; Lewis, Alison – Research in Science Education, 2001
Investigates the metacognitive development of students in a second year chemical engineering course which had such development as an explicit goal. Concludes, among other results, that there is a shift in student approach from a focus on solving problems towards a stronger valuing of conceptual understanding. (Author/MM)
Descriptors: Chemical Engineering, Concept Formation, Educational Strategies, Higher Education
Peer reviewedNewcomer, Jeffrey L.; McKell, Eric K.; Raudebaugh, Robert A.; Kelley, David S. – Engineering Design Graphics Journal, 2001
Describes the two-course engineering design graphics sequence on introductory design and graphics topics. The first course focuses on conceptual design and the development of visualization and sketching skills while the second one concentrates on detail design and parametric modeling. (Contains 28 references.) (Author/ASK)
Descriptors: Course Descriptions, Engineering Education, Graphic Arts, Higher Education
Gainsburg, Julie – Mathematical Thinking & Learning: An International Journal, 2006
Math-education reformers encourage the incorporation of mathematical modeling activities into K-12 curricula. Many of the purported educational benefits derive from the authenticity of the activities-how well they reflect the everyday and occupational mathematical practices of adults. But a paucity in the literature of observational descriptions…
Descriptors: Engineering, Technical Occupations, Ethnography, Problem Solving
Hamilton, Eric; Lesh, Richard; Lester, Frank; Brilleslyper, Michael – Advances in Engineering Education, 2008
This article introduces Model-Eliciting Activities (MEAs) as a form of case study team problem-solving. MEA design focuses on eliciting from students conceptual models that they iteratively revise in problem-solving. Though developed by mathematics education researchers to study the evolution of mathematical problem-solving expertise in middle…
Descriptors: Engineering Education, Mathematics Education, Educational Research, Models
Ayers, Caroline L. – 1981
Presented is a descriptive account of guided design, an educational strategy in which students work together in small groups to solve open-ended problems designed to provide experience in applying the subject matter content of a course. The essential elements of this instructional strategy are described, and the instructor's role clarified as…
Descriptors: Biology, Chemistry, College Science, Course Content
Werner, Linda; Denning, Jill – Journal of Research on Technology in Education, 2009
Few early intervention efforts have improved the representation of women in computer science and engineering (CSE) disciplines, but pair programming has shown promise for reducing gender differences among college students. The current study is the first to examine this promising practice in middle school. In an effort to better understand what…
Descriptors: Intervention, Females, Problem Solving, Gender Issues
Sharp, J. J. – Engineering Education, 1975
Presents the view that formal assignments such as problem sheets to be solved at home within a given amount of time are detrimental to the development of a mature outlook in college students. Presents an alternative to this approach. (GS)
Descriptors: Assignments, Engineering Education, Group Activities, Higher Education
Binous, Housam – Chemical Engineering Education, 2006
We show a new approach, based on the utilization of Mathematica, to solve gas permeation problems using membranes. We start with the design of a membrane unit for the separation of a multicomponent mixture. The built-in Mathematica function, FindRoot, allows one to solve seven simultaneous equations instead of using the iterative approach of…
Descriptors: Chemical Engineering, Mathematics, Computation, Problem Solving
Sandor, George N. – Engineering Education, 1975
Outlines the academic responsibilities connected with the nation's transition to the metric system and indicates how these responsibilities relate to the general task of problem solving. (GS)
Descriptors: Engineering Education, Higher Education, Instruction, Mathematics Education
Buras, Nathan – 1972
Oriented for higher education students, researchers, practicing engineers and planners, this book surveys the state of the art of water resources engineering. A broad spectrum of issues is embraced in the treatment of water resources: quantity aspects as well as quality aspects within a systems approach. Using a rational mode for water resources…
Descriptors: Engineering, Environment, Higher Education, Instructional Materials
Peer reviewedDennien, R. T.; And Others – Journal of Curriculum Studies, 1973
Tests developed for the evaluation of Control Technology, a basic engineering course of study in Great Britain, prove useful for the formative evaluation, but reflect the difficulty of assessing ability to solve technological problems. (Author/KM)
Descriptors: Ability Identification, Curriculum Evaluation, Engineering, Evaluation Methods
Hoelscher, H. E. – Journal of Engineering Education, 1972
Descriptors: College Science, Engineering Education, Problem Solving, Program Development
Lighthill, M. J. – Mathematical Gazette, 1971
This article (the 1971 Presidential Address to the Mathematical Association of U. K.) makes a plea that college teachers of mathematics should be better aware of the applications of mathematics in other subjects. As an example, the author describes the use of differential equations to solve certain vibrational problems in mechanical engineering.…
Descriptors: Calculus, College Mathematics, Engineering, Instruction
Peer reviewedWesterberg, Arthur W. – Chemical Engineering Education, 1980
By providing an example problem in solving sets of nonlinear algebraic equations, the advantages and disadvantages of two methods for its solution, the tearing approach v the Newton-Raphson approach, are elucidated. (CS)
Descriptors: Algebra, Chemistry, College Science, Engineering Education
Peer reviewedKharab, Abdelwahab – Computer Applications in Engineering Education, 1997
Spreadsheet programs are used increasingly by engineering students to solve problems, especially problems requiring repetitive calculations, as they provide rapid and simple numerical solutions. This article shows how advanced spreadsheet programs are used in the learning of numerical solutions of two-dimensional diffusion equation using the…
Descriptors: Computation, Computer Software, Differential Equations, Diffusion (Physics)

Direct link
