NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jeffrey P. Smith – Mathematics Teacher: Learning and Teaching PK-12, 2023
A group of eighth-graders was presented with a two-day lab exploring graph theory as an enrichment experience. With the school's winter break looming, students were weary of solving linear equations, and this topic was intended to inject some new life into the classroom. In addition to learning about a completely new topic, they would be exposed…
Descriptors: Grade 8, Mathematics Education, Graphs, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Fraivert, David; Sigler, Avi; Stupel, Moshe – International Journal of Mathematical Education in Science and Technology, 2020
There are many problems whose solution requires proof that a quadrilateral is cyclic. The main reason for writing this paper is to offer a number of new tools for proving that a particular quadrilateral is cyclic, thus expanding the present knowledge base and ensuring that investigators in mathematics and teachers of mathematics have at their…
Descriptors: Geometric Concepts, Mathematical Logic, Validity, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Muhammad, Adhraa M.; Ayal, A. M. – International Electronic Journal of Mathematics Education, 2019
Bernstein polynomial is one of the most valuable and attractive method used to develop numerical solution for several complex models because of its robustness to demonstrate approximation for anonymous equations. In this paper, Bernstein polynomial is proposed to present effective solution for the 2nd kind linear Volterra integral equations with…
Descriptors: Algebra, Mathematical Formulas, Equations (Mathematics), Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Gilbertson, Nicholas J. – Mathematics Teacher, 2016
A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…
Descriptors: Mathematics Instruction, Mathematical Formulas, Validity, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2013
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
Descriptors: Mathematics, Mathematical Formulas, Introductory Courses, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Zhibo; Wei, Sheng; Xiao, Xuerong – International Journal of Mathematical Education in Science and Technology, 2012
Calculus II students know that many alternating series are convergent by the Alternating Series Test. However, they know few alternating series (except geometric series and some trivial ones) for which they can find the sum. In this article, we present a method that enables the students to find sums for infinitely many alternating series in the…
Descriptors: Mathematical Concepts, Teaching Methods, College Mathematics, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Abramovich, S. – International Journal of Mathematical Education in Science and Technology, 2014
The availability of sophisticated computer programs such as "Wolfram Alpha" has made many problems found in the secondary mathematics curriculum somewhat obsolete for they can be easily solved by the software. Against this background, an interplay between the power of a modern tool of technology and educational constraints it presents is…
Descriptors: Problem Solving, Mathematics Instruction, Educational Technology, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Mortici, Cristinel – International Journal of Mathematical Education in Science and Technology, 2011
The well-known Stolz-Cesaro lemma is due to the mathematicians Ernesto Cesaro (1859-1906) and Otto Stolz (1842-1905). The aim of this article is to give new forms of Stolz-Cesaro lemma involving the limit [image omitted].
Descriptors: Mathematics Instruction, Mathematical Formulas, Computation, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Ho, Weng Kin; Ho, Foo Him; Lee, Tuo Yeong – International Journal of Mathematical Education in Science and Technology, 2012
This article gives an elementary proof of the famous identity [image omitted]. Using nothing more than freshman calculus, the present proof is far simpler than many existing ones. This result also leads directly to Euler's and Neville's identities, as well as the identity [image omitted].
Descriptors: Calculus, Mathematics Instruction, Mathematical Logic, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Niizeki, Shozo; Araki, Makoto – International Journal of Mathematical Education in Science and Technology, 2010
The purpose of our article is to show two simpler and clearer methods of proving Stirling's formula than the traditional and conventional ones. The distinction of our method is to use the simple trapezoidal formula.
Descriptors: Mathematical Formulas, Mathematics Instruction, Mathematical Logic, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Skurnick, Ronald – Mathematics and Computer Education, 2011
This classroom note is presented as a suggested exercise--not to have the class prove or disprove Goldbach's Conjecture, but to stimulate student discussions in the classroom regarding proof, as well as necessary, sufficient, satisfied, and unsatisfied conditions. Goldbach's Conjecture is one of the oldest unsolved problems in the field of number…
Descriptors: Mathematical Formulas, Numbers, Number Concepts, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Papadopoulos, Ioannis; Iatridou, Maria – Journal of Mathematical Behavior, 2010
In this paper two 10th graders having an accumulated experience on problem-solving ancillary to the concept of area confronted the task to find Pick's formula for a lattice polygon's area. The formula was omitted from the theorem in order for the students to read the theorem as a problem to be solved. Their working is examined and emphasis is…
Descriptors: Grade 10, Mathematics Instruction, Experiments, Secondary School Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Easdown, David – International Journal of Mathematical Education in Science and Technology, 2009
This article discusses a variety of examples in errors in mathematical reasoning, the source of which is due to the tension between the syntax (form of mathematical expression) and semantics (underlying ideas or meaning). This article suggests that the heightened awareness of syntactic and semantic reasoning, and the consequent resolution of the…
Descriptors: Semantics, Syntax, Mathematical Formulas, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bruckman, Paul S. – International Journal of Mathematical Education in Science and Technology, 2008
An elementary proof by contradiction of the Collatz Conjecture (CC) (also known as the "3X + 1" Conjecture), is presented. A modified form of the Collatz transformation is formulated, leading to the concept of a modified Collatz chain. A smallest counterexample N[subscript 0] is hypothesized; the existence of N[subscript 0] implies that…
Descriptors: Equations (Mathematics), Problem Solving, Validity, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Plaza, A.; Falcon, S. – International Journal of Mathematical Education in Science and Technology, 2008
This note shows a combinatorial approach to some identities for generalized Fibonacci numbers. While it is a straightforward task to prove these identities with induction, and also by arithmetical manipulations such as rearrangements, the approach used here is quite simple to follow and eventually reduces the proof to a counting problem. (Contains…
Descriptors: Arithmetic, Mathematics Instruction, Problem Solving, Validity
Previous Page | Next Page ยป
Pages: 1  |  2