NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Adult Intelligence…1
What Works Clearinghouse Rating
Showing 1 to 15 of 31 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Elina Palmgren; Tapio Rasa – Science & Education, 2024
Modelling roles of mathematics in physics has proved to be a difficult task, with previous models of the interplay between the two disciplines mainly focusing on mathematical modelling and problem solving. However, to convey a realistic view of physics as a field of science to our students, we need to do more than train them to become fluent in…
Descriptors: Physics, Mathematical Models, Science Instruction, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Atkin, Keith – Physics Education, 2022
This paper describes two examples of teaching situations in which the idea of infinity arises, and supports the conclusion that infinity is not a physical reality but a very powerful and useful mathematical device which facilitates modelling and the solution of problems in physics.
Descriptors: Science Instruction, Physics, Scientific Concepts, Mathematical Models
Jessica M. Karch – ProQuest LLC, 2021
Productive problem solving, concept construction, and sense making occur through the core process of abstraction. Although the capacity for domain-general abstraction is developed at a young age, the role of abstraction in increasingly complex and disciplinary environments, such as those encountered in undergraduate STEM education, is not well…
Descriptors: Undergraduate Students, Science Instruction, Chemistry, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Romano, Paola; Mandrone, Mario – Physics Education, 2019
In this paper the muscular activity will be treated from a physical point of view, considering the main physical parameters that can be quantified. A brief and simple theoretical treatment will be followed by some homeworks for students. The problems have a difficulty degree typical of an undergraduate class, and the arguments have been chosen…
Descriptors: Biophysics, Muscular Strength, Homework, Human Body
Obaya Valdivia, Adolfo E.; Osornio, Carlos Montaño; Vargas-Rodríguez, Yolanda Marina – Online Submission, 2021
In the resolution of problems in chemical kinetics and catalysis the mathematical models relate the independent variable that is usually time, with the dependent variable which is normally the concentration of a reactant. They conform to linear models, whose parameters such as the ordering to origin and the slope are kinetic parameters, applying…
Descriptors: Problem Based Learning, Problem Solving, Chemistry, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Geske, Matthew – Physics Teacher, 2019
Many introductory physics courses begin with the teaching of motion and kinematics. This naturally leads to the use of constant acceleration equations to solve various problems involving common motions (free fall being a notable example). Students can sometimes get the impression that these equations are the only thing they need to remember in…
Descriptors: Physics, Science Instruction, Scientific Concepts, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Shang, Hao – Journal of Chemical Education, 2021
Here, we present an interdisciplinary educational project intended for high school chemistry that is focused on the establishment of a mathematical model to describe the relationship between conductivity and concentration, while linking chemistry to mathematics with the help of computer software. The project was designed to help high school…
Descriptors: Science Instruction, Chemistry, Teaching Methods, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Lim, Woong; Lee, Younhee; Lee, Ji-Eun – Australian Mathematics Education Journal, 2019
Integrating the disciplines of mathematics and science is one way to place the calculations of volume and surface area into a real life context. The authors present an activity for middle-school students that aims to promote their learning of these key concepts in a personally meaningful way, whilst also developing inquiry and problem solving…
Descriptors: Mathematics Instruction, Measurement, Computation, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Sokolowski, Andrzej – Physics Teacher, 2019
Research identifies two domains by which mathematics allows learning physics concepts: a technical domain that includes algorithmic operations that lead to solving formulas for an unknown quantity and a structural domain that allows for applying mathematical knowledge for structuring physical phenomena. While the technical domain requires…
Descriptors: Physics, Science Instruction, Mathematics Skills, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Hutchins, Nicole M.; Biswas, Gautam; Maróti, Miklós; Lédeczi, Ákos; Grover, Shuchi; Wolf, Rachel; Blair, Kristen Pilner; Chin, Doris; Conlin, Luke; Basu, Satabdi; McElhaney, Kevin – Journal of Science Education and Technology, 2020
Synergistic learning combining computational thinking (CT) and STEM has proven to be an effective method for advancing learning and understanding in a number of STEM domains and simultaneously helping students develop important CT concepts and practices. We adopt a design-based approach to develop, evaluate, and refine our Collaborative,…
Descriptors: Physics, Science Instruction, STEM Education, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas – International Journal of Mathematical Education in Science and Technology, 2017
The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect, if it focuses on solving so-called unformalized problems,…
Descriptors: Problem Solving, Mathematics, Physics, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Scott, Fraser J. – European Journal of Science and Mathematics Education, 2016
The "mathematics problem" is a well-known source of difficulty for students attempting numerical problem solving questions in the context of science education. This paper illuminates this problem from a biology education perspective by invoking Hogan's numeracy framework. In doing so, this study has revealed that the contextualisation of…
Descriptors: Problem Solving, Numeracy, Biology, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Uhden, Olaf; Karam, Ricardo; Pietrocola, Mauricio; Pospiech, Gesche – Science & Education, 2012
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a…
Descriptors: Physics, Mathematics Skills, Mathematical Logic, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Winkel, Brian – International Journal of Mathematical Education in Science and Technology, 2011
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Descriptors: Kinetics, Chemistry, Calculus, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Stamovlasis, Dimitrios; Tsaparlis, Georgios – Science Education, 2012
In this study, we test an information-processing model (IPM) of problem solving in science education, namely the working memory overload model, by applying catastrophe theory. Changes in students' achievement were modeled as discontinuities within a cusp catastrophe model, where working memory capacity was implemented as asymmetry and the degree…
Descriptors: Predictor Variables, High School Students, Logical Thinking, Science Education
Previous Page | Next Page »
Pages: 1  |  2  |  3