NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Richard F. Melka; Hashim A. Yousif – International Journal of Mathematical Education in Science and Technology, 2023
In application-oriented mathematics, particularly in the context of nonlinear system analysis, phase plane analysis through SageMath offers a visual display of the qualitative behaviour of solutions to differential equations without inundating students with cumbersome calculations of the plane-phase. A variety of examples is usually given to…
Descriptors: Mathematical Concepts, Mathematical Applications, Problem Solving, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kazunga, Cathrine; Bansilal, Sarah – Educational Studies in Mathematics, 2020
The concept of determinant plays a central role in many linear algebra concepts and is also applied to other branches of mathematics and science. In this study, we focus on the application of determinant and inverse matrix concepts, in solving systems of equations by a group of 116 in-service mathematics teachers who were studying the topic at a…
Descriptors: Foreign Countries, Mathematical Concepts, Mathematical Applications, Mathematics Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Trenkler, Gotz; Trenkler, Dietrich – College Mathematics Journal, 2012
The numerical range, easy to understand but often tedious to compute, provides useful information about a matrix. Here we describe the numerical range of a 3 x 3 magic square. Applying our results to one of the most famous of those squares, the Luoshu, it turns out that its numerical range is a piece of cake--almost.
Descriptors: Problem Solving, Mathematical Concepts, Computation, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Ndlovu, Zanele; Brijlall, Deonarain – African Journal of Research in Mathematics, Science and Technology Education, 2015
This study is part of ongoing research in undergraduate mathematics education. The study was guided by the belief that understanding the mental constructions the pre-service teachers make when learning matrix algebra concepts leads to improved instructional methods. In this preliminary study the data was collected from 85 pre-service teachers…
Descriptors: Preservice Teachers, Mathematics Instruction, Algebra, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sylvestre, Jeremy – PRIMUS, 2014
This article outlines a problem-centered approach to the topic of canonical matrix forms in a second linear algebra course. In this approach, abstract theory, including such topics as eigenvalues, generalized eigenspaces, invariant subspaces, independent subspaces, nilpotency, and cyclic spaces, is developed in response to the patterns discovered…
Descriptors: Problem Based Learning, Matrices, Algebra, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Trenkler, Gotz; Schmidt, Karsten; Trenkler, Dietrich – International Journal of Mathematical Education in Science and Technology, 2012
In this article a new parameterization of magic squares of order three is presented. This parameterization permits an easy computation of their inverses, eigenvalues, eigenvectors and adjoints. Some attention is paid to the Luoshu, one of the oldest magic squares.
Descriptors: Mathematics Activities, Mathematics Instruction, Mathematical Concepts, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G. – International Journal of Mathematical Education in Science and Technology, 2012
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
Descriptors: Statistical Data, Matrices, Mathematics Instruction, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2012
This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.
Descriptors: Matrices, Mathematics Instruction, Validity, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Cheteyan, Leslie A.; Hengeveld, Stewart; Jones, Michael A. – College Mathematics Journal, 2011
In this paper, we review the rules and game board for "Chutes and Ladders", define a Markov chain to model the game regardless of the spinner range, and describe how properties of Markov chains are used to determine that an optimal spinner range of 15 minimizes the expected number of turns for a player to complete the game. Because the Markov…
Descriptors: Markov Processes, Mathematics Instruction, Games, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Avila, Cheryl L.; Ortiz, Enrique – Mathematics Teaching in the Middle School, 2012
Learning mathematics is challenging. It requires discipline, logic, precision, perseverance, and accuracy. It can also be fun. When mathematics is set in a context that inspires students to want to solve interesting problems, students will have an intrinsic desire to learn the necessary skills to accomplish a specific goal. The game of Crypto! was…
Descriptors: Matrices, Graphing Calculators, Mathematics Instruction, Secondary School Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Kanwar, V.; Sharma, Kapil K.; Behl, Ramandeep – International Journal of Mathematical Education in Science and Technology, 2010
In this article, we derive one-parameter family of Schroder's method based on Gupta et al.'s (K.C. Gupta, V. Kanwar, and S. Kumar, "A family of ellipse methods for solving non-linear equations", Int. J. Math. Educ. Sci. Technol. 40 (2009), pp. 571-575) family of ellipse methods for the solution of nonlinear equations. Further, we introduce new…
Descriptors: Geometric Concepts, Equations (Mathematics), Matrices, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Rice, Adrian; Torrence, Eve – College Mathematics Journal, 2007
Charles Dodgson (Lewis Carroll) discovered a "curious" method for computing determinants. It is an iterative process that uses determinants of 2 x 2 submatrices of a matrix to obtain a smaller matrix. When the process ends, the result is the determinant of the original matrix. This article discusses both the algorithm and what may have led Dodgson…
Descriptors: Matrices, Problem Solving, Computation, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Teets, Donald – AMATYC Review, 2008
This article shows how to use six parameters describing the International Space Station's orbit to predict when and in what part of the sky observers can look for the station as it passes over their location. The method requires only a good background in trigonometry and some familiarity with elementary vector and matrix operations. An included…
Descriptors: Space Exploration, Familiarity, Spreadsheets, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, Sepideh; Thomas, Michael O. J. – International Journal of Mathematical Education in Science and Technology, 2007
Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…
Descriptors: Advanced Courses, Mathematics Instruction, College Mathematics, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Scott, Damon – PRIMUS, 2007
For over a decade it has been a common observation that a "fog" passes over the course in linear algebra once abstract vector spaces are presented. See [2, 3]. We show how this fog may be cleared by having the students translate "abstract" vector-space problems to isomorphic "concrete" settings, solve the "concrete" problem either by hand or with…
Descriptors: Algebra, Undergraduate Study, Mathematics Instruction, College Science
Previous Page | Next Page ยป
Pages: 1  |  2