NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nitesh Kumar Jha; Plaban Kumar Bhowmik; Kaushal Kumar Bhagat – Educational Technology Research and Development, 2024
A majority of research in Computational Thinking (CT) mainly focuses on teaching coding to school students. However, CT involves more than just coding and includes other skills like algorithmic thinking. The current study developed an Online Inquiry-based Learning Platform for Computational Thinking (CT-ONLINQ) that follows Inquiry-Based Learning…
Descriptors: Thinking Skills, Computer Science Education, Comparative Analysis, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Hill, Matthew; Sharma, Manjula Devi – EURASIA Journal of Mathematics, Science & Technology Education, 2015
To succeed within scientific disciplines, using representations, including those based on words, graphs, equations, and diagrams, is important. Research indicates that the use of discipline specific representations (sometimes referred to as expert generated representations), as well as multi-representational use, is critical for problem solving…
Descriptors: Case Studies, Graduate Students, Qualitative Research, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Carruthers, Sarah; Masson, Michael E. J.; Stege, Ulrike – Journal of Problem Solving, 2012
Recent studies on a computationally hard visual optimization problem, the Traveling Salesperson Problem (TSP), indicate that humans are capable of finding close to optimal solutions in near-linear time. The current study is a preliminary step in investigating human performance on another hard problem, the Minimum Vertex Cover Problem, in which…
Descriptors: Performance, Problem Solving, Graphs, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M. – Journal of the Learning Sciences, 2013
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Probability, Skill Development
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection