Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 9 |
Descriptor
Computation | 9 |
Problem Solving | 9 |
Intelligent Tutoring Systems | 7 |
Interaction | 5 |
Educational Games | 4 |
Models | 4 |
Automation | 3 |
Data Analysis | 3 |
Feedback (Response) | 3 |
Knowledge Level | 3 |
Prediction | 3 |
More ▼ |
Source
International Educational… | 9 |
Author
Publication Type
Speeches/Meeting Papers | 7 |
Reports - Research | 4 |
Collected Works - Proceedings | 2 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Secondary Education | 4 |
Junior High Schools | 3 |
Middle Schools | 3 |
High Schools | 2 |
Higher Education | 2 |
Postsecondary Education | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 8 | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Force Concept Inventory | 1 |
What Works Clearinghouse Rating
Malik, Ali; Wu, Mike; Vasavada, Vrinda; Song, Jinpeng; Coots, Madison; Mitchell, John; Goodman, Noah; Piech, Chris – International Educational Data Mining Society, 2021
Access to high-quality education at scale is limited by the difficulty of providing student feedback on open-ended assignments in structured domains like programming, graphics, and short response questions. This problem has proven to be exceptionally difficult: for humans, it requires large amounts of manual work, and for computers, until…
Descriptors: Grading, Accuracy, Computer Assisted Testing, Automation
Khayi, Nisrine Ait; Rus, Vasile – International Educational Data Mining Society, 2019
In this paper, we applied a number of clustering algorithms on pretest data collected from 264 high-school students. Students took the pre-test at the beginning of a 5-week experiment in which they interacted with an intelligent tutoring system. The primary goal of this work is to identify clusters of students exhibiting similar knowledge…
Descriptors: High School Students, Cluster Grouping, Prior Learning, Intelligent Tutoring Systems
Akram, Bita; Min, Wookhee; Wiebe, Eric; Mott, Bradford; Boyer, Kristy Elizabeth; Lester, James – International Educational Data Mining Society, 2018
A key affordance of game-based learning environments is their potential to unobtrusively assess student learning without interfering with gameplay. In this paper, we introduce a temporal analytics framework for stealth assessment that analyzes students' problem-solving strategies. The strategy-based temporal analytic framework uses long short-term…
Descriptors: Educational Games, Problem Solving, Educational Environment, Short Term Memory
Clement, Benjamin; Oudeyer, Pierre-Yves; Lopes, Manuel – International Educational Data Mining Society, 2016
Online planning of good teaching sequences has the potential to provide a truly personalized teaching experience with a huge impact on the motivation and learning of students. In this work we compare two main approaches to achieve such a goal, POMDPs that can find an optimal long-term path, and Multi-armed bandits that optimize policies locally…
Descriptors: Intelligent Tutoring Systems, Markov Processes, Models, Teaching Methods
Eagle, Michael; Hicks, Drew; Barnes, Tiffany – International Educational Data Mining Society, 2015
Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…
Descriptors: Problem Solving, Prediction, Intelligent Tutoring Systems, Computer Assisted Instruction
an de Sande, Brett – International Educational Data Mining Society, 2016
Learning curves have proven to be a useful tool for understanding how a student learns a given skill as they progress through a curriculum. A learning curve for a given Knowledge Component (KC) is a plot of some measure of competence as a function of the number of opportunities the student has had to apply that KC. Consider the case where each…
Descriptors: Learning Processes, Knowledge Level, Problem Solving, Homework
Eagle, Michael; Barnes, Tiffany – International Educational Data Mining Society, 2015
Interactive problem solving environments, such as intelligent tutoring systems and educational video games, produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled the student-tutor interactions using complex network…
Descriptors: Interaction, Teacher Student Relationship, Intelligent Tutoring Systems, Data
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis