NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Richmond, Bettina – College Mathematics Journal, 2010
It seems rather surprising that any given polynomial p(x) with nonnegative integer coefficients can be determined by just the two values p(1) and p(a), where a is any integer greater than p(1). This result has become known as the "perplexing polynomial puzzle." Here, we address the natural question of what might be required to determine a…
Descriptors: Numbers, Graphing Calculators, Thinking Skills, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Koshy, Thomas – College Mathematics Journal, 2009
A. Lobb discovered an interesting generalization of Catalan's parenthesization problem, namely: Find the number L(n, m) of arrangements of n + m positive ones and n - m negative ones such that every partial sum is nonnegative, where 0 = m = n. This article uses Lobb's formula, L(n, m) = (2m + 1)/(n + m + 1) C(2n, n + m), where C is the usual…
Descriptors: Geometric Concepts, Generalization, Problem Solving, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Gordon, Russell – College Mathematics Journal, 2008
Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…
Descriptors: Geometric Concepts, Geometry, College Mathematics, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Hoensch, Ulrich A. – College Mathematics Journal, 2009
We explore how curvature and torsion determine the shape of a curve via the Frenet-Serret formulas. The connection is made explicit using the existence of solutions to ordinary differential equations. We use a paperclip as a concrete, visual example and generate its graph in 3-space using a CAS. We also show how certain physical deformations to…
Descriptors: Equations (Mathematics), Calculus, Geometric Concepts, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Rogers, Allen D. – College Mathematics Journal, 2007
This article explores phenomena related to fitting polynomials with data sets with equally spaced x-values.
Descriptors: Mathematical Concepts, Data, Algebra, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Hathout, Leith – College Mathematics Journal, 2007
The well-known "hats" problem, in which a number of people enter a restaurant and check their hats, and then receive them back at random, is often used to illustrate the concept of derangements, that is, permutations with no fixed points. In this paper, the problem is extended to multiple items of clothing, and a general solution to the problem of…
Descriptors: Computation, Problem Solving, Mathematical Concepts, Mathematical Formulas
Peer reviewed Peer reviewed
Drucker, Daniel – College Mathematics Journal, 1992
Describes an experiment to determine which of four objects, hollow cylinders, solid cylinders, hollow balls, and solid balls, will reach the bottom of an inclined plane first when released simultaneously. Provides solutions to the problem and supplementary exercises. (MDH)
Descriptors: Calculus, Enrichment Activities, Experiments, Higher Education