Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
Chemical Engineering Education | 6 |
Author
Asogwa, Uchenna | 1 |
Duckett, T. Ryan | 1 |
Felse, P. Arthur | 1 |
Hirshfield, Laura J. | 1 |
Khera, Eshita | 1 |
Koretsky, Milo | 1 |
Liberatore, Matthew W. | 1 |
Mayes, Heather B. | 1 |
Mentzer, Gale A. | 1 |
Nagma Zerin | 1 |
Wen, Fei | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Descriptive | 3 |
Reports - Research | 3 |
Education Level
Higher Education | 5 |
Postsecondary Education | 4 |
Audience
Location
Michigan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Asogwa, Uchenna; Duckett, T. Ryan; Mentzer, Gale A.; Liberatore, Matthew W. – Chemical Engineering Education, 2021
The impact of solving novel video-inspired homework problems on learning attitudes toward chemical engineering was examined at beginning and end of an undergraduate material and energy balances course using a modified Colorado Learning Attitudes about Science Survey instrument. Mean overall attitude of participants improved by a normalized gain…
Descriptors: Homework, Student Attitudes, Video Technology, Problem Solving
Nagma Zerin – Chemical Engineering Education, 2024
Project-Enhanced learning is an excellent way to facilitate student-centered learning along with traditional lecture-based learning. In this Class and Home problem, an example of Project-Enhanced learning is provided that can be used in the Mass and Energy Balances (MEB) course. The students solve this problem as part of a group while receiving…
Descriptors: Student Projects, Active Learning, Student Centered Learning, Teaching Methods
Felse, P. Arthur – Chemical Engineering Education, 2018
Cross-disciplinary fields such as biotechnology require chemical engineers and non-engineers to routinely work together, thus creating a need for non-engineers to learn chemical engineering. But limited knowledge on non-engineers' learning preferences and the lack of pedagogical methods to teach non-engineers restricts the opportunities available…
Descriptors: Biotechnology, Mechanics (Physics), Teaching Methods, Engineering Education
Hirshfield, Laura J.; Mayes, Heather B. – Chemical Engineering Education, 2019
With the advance of engineering education research and scholarship, there has been an increased focus on amending chemical engineering courses to increase student learning, engagement and enjoyment. These approaches are often incorporated in project-based courses such as capstone design courses and laboratory courses, providing opportunities to…
Descriptors: Undergraduate Students, Chemical Engineering, Engineering Education, Inclusion
Koretsky, Milo – Chemical Engineering Education, 2017
This article reports analysis of students' written reflections as to what helps them learn in an active learning environment. Eight hundred and twenty seven responses from 403 students in four different studio courses over two years were analyzed. An emergent coding scheme identified 55% of the responses as associated with cognitive processes…
Descriptors: Active Learning, Learning Processes, Problem Solving, Teacher Student Relationship
Wen, Fei; Khera, Eshita – Chemical Engineering Education, 2016
Despite the instinctive perception of mass and heat transfer principles in daily life, productive learning in this course continues to be one of the greatest challenges for undergraduate students in chemical engineering. In an effort to enhance student learning in classroom, we initiated an innovative active-learning method titled…
Descriptors: Active Learning, Heat, Thermodynamics, Student Developed Materials