NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Guojing; Azizsoltani, Hamoon; Ausin, Markel Sanz; Barnes, Tiffany; Chi, Min – International Journal of Artificial Intelligence in Education, 2022
In interactive e-learning environments such as Intelligent Tutoring Systems, pedagogical decisions can be made at different levels of granularity. In this work, we focus on making decisions at "two levels": whole problems vs. single steps and explore three types of granularity: "problem-level only" ("Prob-Only"),…
Descriptors: Electronic Learning, Intelligent Tutoring Systems, Decision Making, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dong, Yihuan; Marwan, Samiha; Shabrina, Preya; Price, Thomas; Barnes, Tiffany – International Educational Data Mining Society, 2021
Over the years, researchers have studied novice programming behaviors when doing assignments and projects to identify struggling students. Much of these efforts focused on using student programming and interaction features to predict student success at a course level. While these methods are effective at early detection of struggling students in…
Descriptors: Navigation (Information Systems), Academic Achievement, Learner Engagement, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Cody, Christa; Maniktala, Mehak; Lytle, Nicholas; Chi, Min; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2022
Research has shown assistance can provide many benefits to novices lacking the mental models needed for problem solving in a new domain. However, varying approaches to assistance, such as subgoals and next-step hints, have been implemented with mixed results. Next-Step hints are common in data-driven tutors due to their straightforward generation…
Descriptors: Comparative Analysis, Prior Learning, Intelligent Tutoring Systems, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Maniktala, Mehak; Cody, Christa; Barnes, Tiffany; Chi, Min – International Journal of Artificial Intelligence in Education, 2020
Within intelligent tutoring systems, considerable research has investigated hints, including how to generate data-driven hints, what hint content to present, and when to provide hints for optimal learning outcomes. However, less attention has been paid to "how" hints are presented. In this paper, we propose a new hint delivery mechanism…
Descriptors: Intelligent Tutoring Systems, Cues, Computer Interfaces, Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maniktala, Mehak; Cody, Christa; Isvik, Amy; Lytle, Nicholas; Chi, Min; Barnes, Tiffany – Journal of Educational Data Mining, 2020
Determining "when" and "whether" to provide personalized support is a well-known challenge called the assistance dilemma. A core problem in solving the assistance dilemma is the need to discover when students are unproductive so that the tutor can intervene. Such a task is particularly challenging for open-ended domains, even…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Helping Relationship, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhi, Rui; Marwan, Samiha; Dong, Yihuan; Lytle, Nicholas; Price, Thomas W.; Barnes, Tiffany – International Educational Data Mining Society, 2019
Viewing worked examples before problem solving has been shown to improve learning efficiency in novice programming. Example-based feedback seeks to present smaller, adaptive worked example steps during problem solving. We present a method for automatically generating and selecting adaptive, example-based programming feedback using historical…
Descriptors: Data Use, Feedback (Response), Novices, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mostafav, Behrooz; Barnes, Tiffany – International Educational Data Mining Society, 2016
We have been incrementally adding data-driven methods into the Deep Thought logic tutor for the purpose of creating a fully data-driven intelligent tutoring system. Our previous research has shown that the addition of data-driven hints, worked examples, and problem assignment can improve student performance and retention in the tutor. In this…
Descriptors: Data, Intelligent Tutoring Systems, Problem Solving, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Mostafavi, Behrooz; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2017
Deductive logic is essential to a complete understanding of computer science concepts, and is thus fundamental to computer science education. Intelligent tutoring systems with individualized instruction have been shown to increase learning gains. We seek to improve the way deductive logic is taught in computer science by developing an intelligent,…
Descriptors: Artificial Intelligence, Problem Solving, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Zhongxiu; Zhi, Rui; Hicks, Andrew; Barnes, Tiffany – Computer Science Education, 2017
Debugging is an over-looked component in K-12 computational thinking education. Few K-12 programming environments are designed to teach debugging, and most debugging research were conducted on college-aged students. In this paper, we presented debugging exercises to 6th-8th grade students and analyzed their problem solving behaviors in a…
Descriptors: Problem Solving, Middle School Students, Student Behavior, Programming
Eagle, Michael; Hicks, Drew; Barnes, Tiffany – International Educational Data Mining Society, 2015
Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…
Descriptors: Problem Solving, Prediction, Intelligent Tutoring Systems, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Eagle, Michael; Barnes, Tiffany – International Educational Data Mining Society, 2015
Interactive problem solving environments, such as intelligent tutoring systems and educational video games, produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled the student-tutor interactions using complex network…
Descriptors: Interaction, Teacher Student Relationship, Intelligent Tutoring Systems, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Stamper, John; Eagle, Michael; Barnes, Tiffany; Croy, Marvin – International Journal of Artificial Intelligence in Education, 2013
We have augmented the Deep Thought logic tutor with a Hint Factory that generates data-driven, contextspecific hints for an existing computer aided instructional tool. We investigate the impact of the Hint Factory's automatically generated hints on educational outcomes in a switching replications experiment that shows that hints help students…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Problem Solving, College Students
Previous Page | Next Page ยป
Pages: 1  |  2