NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 91 to 105 of 370 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Uwimpuhwe, Germaine; Singh, Akansha; Higgins, Steve; Coux, Mickael; Xiao, ZhiMin; Shkedy, Ziv; Kasim, Adetayo – Journal of Experimental Education, 2022
Educational stakeholders are keen to know the magnitude and importance of different interventions. However, the way evidence is communicated to support understanding of the effectiveness of an intervention is controversial. Typically studies in education have used the standardised mean difference as a measure of the impact of interventions. This…
Descriptors: Program Effectiveness, Intervention, Multivariate Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Educational and Psychological Measurement, 2017
There has been much controversy over the null hypothesis significance testing procedure, with much of the criticism centered on the problem of inverse inference. Specifically, p gives the probability of the finding (or one more extreme) given the null hypothesis, whereas the null hypothesis significance testing procedure involves drawing a…
Descriptors: Statistical Inference, Hypothesis Testing, Probability, Intervals
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cook, Joshua; Lynch, Collin F.; Hicks, Andrew G.; Mostafavi, Behrooz – International Educational Data Mining Society, 2017
BKT and other classical student models are designed for binary environments where actions are either correct or incorrect. These models face limitations in open-ended and data-driven environments where actions may be correct but non-ideal or where there may even be degrees of error. In this paper we present BKT-SR and RKT-SR: extensions of the…
Descriptors: Models, Bayesian Statistics, Data Use, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Whitehill, Jacob; Movellan, Javier – IEEE Transactions on Learning Technologies, 2018
We propose a method of generating teaching policies for use in intelligent tutoring systems (ITS) for concept learning tasks [1], e.g., teaching students the meanings of words by showing images that exemplify their meanings à la Rosetta Stone [2] and Duo Lingo [3]. The approach is grounded in control theory and capitalizes on recent work by [4],…
Descriptors: Intelligent Tutoring Systems, Second Language Learning, Educational Policy, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Man, Kaiwen; Harring, Jeffery R.; Ouyang, Yunbo; Thomas, Sarah L. – International Journal of Testing, 2018
Many important high-stakes decisions--college admission, academic performance evaluation, and even job promotion--depend on accurate and reliable scores from valid large-scale assessments. However, examinees sometimes cheat by copying answers from other test-takers or practicing with test items ahead of time, which can undermine the effectiveness…
Descriptors: Reaction Time, High Stakes Tests, Test Wiseness, Cheating
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Henman, Paul; Brown, Scott D.; Dennis, Simon – Australian Universities' Review, 2017
In 2015, the Australian Government's Excellence in Research for Australia (ERA) assessment of research quality declined to rate 1.5 per cent of submissions from universities. The public debate focused on practices of gaming or "coding errors" within university submissions as the reason for this outcome. The issue was about the…
Descriptors: Rating Scales, Foreign Countries, Universities, Achievement Rating
Hicks, Tyler; Rodríguez-Campos, Liliana; Choi, Jeong Hoon – American Journal of Evaluation, 2018
To begin statistical analysis, Bayesians quantify their confidence in modeling hypotheses with priors. A prior describes the probability of a certain modeling hypothesis apart from the data. Bayesians should be able to defend their choice of prior to a skeptical audience. Collaboration between evaluators and stakeholders could make their choices…
Descriptors: Bayesian Statistics, Evaluation Methods, Statistical Analysis, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…
Descriptors: Experiments, Inferences, Bayesian Statistics, Probability
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Satake, Eiki; Vashlishan Murray, Amy – Teaching Statistics: An International Journal for Teachers, 2015
This paper presents a comparison of three approaches to the teaching of probability to demonstrate how the truth table of elementary mathematical logic can be used to teach the calculations of conditional probabilities. Students are typically introduced to the topic of conditional probabilities--especially the ones that involve Bayes' rule--with…
Descriptors: Teaching Methods, Probability, Bayesian Statistics, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Yoon Jeon; Almond, Russell G.; Shute, Valerie J. – International Journal of Testing, 2016
Game-based assessment (GBA) is a specific use of educational games that employs game activities to elicit evidence for educationally valuable skills and knowledge. While this approach can provide individualized and diagnostic information about students, the design and development of assessment mechanics for a GBA is a nontrivial task. In this…
Descriptors: Design, Evidence Based Practice, Test Construction, Physics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rudner, Lawrence – Practical Assessment, Research & Evaluation, 2016
In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows…
Descriptors: Accuracy, Bayesian Statistics, Regression (Statistics), Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Pan, Tianshu; Yin, Yue – Applied Measurement in Education, 2017
In this article, we propose using the Bayes factors (BF) to evaluate person fit in item response theory models under the framework of Bayesian evaluation of an informative diagnostic hypothesis. We first discuss the theoretical foundation for this application and how to analyze person fit using BF. To demonstrate the feasibility of this approach,…
Descriptors: Bayesian Statistics, Goodness of Fit, Item Response Theory, Monte Carlo Methods
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  25