NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 61 to 75 of 370 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ebert, Philip A. – Journal of Adventure Education and Outdoor Learning, 2019
In this article, I explore a Bayesian approach to avalanche decision-making. I motivate this perspective by highlighting a version of the base-rate fallacy and show that a similar pattern applies to decision-making in avalanche-terrain. I then draw out three theoretical lessons from adopting a Bayesian approach and discuss these lessons…
Descriptors: Bayesian Statistics, Decision Making, Outdoor Education, Natural Disasters
Tingir, Seyfullah – ProQuest LLC, 2019
Educators use various statistical techniques to explain relationships between latent and observable variables. One way to model these relationships is to use Bayesian networks as a scoring model. However, adjusting the conditional probability tables (CPT-parameters) to fit a set of observations is still a challenge when using Bayesian networks. A…
Descriptors: Bayesian Statistics, Statistical Analysis, Scoring, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Stone, Daniel F. – Journal of Economic Education, 2022
The author of this article describes a game-theory-based economics class on how people should, and do, form beliefs, communicate, and make decisions under uncertainty. Topics include Bayesian and non-Bayesian belief updating, the value of information, communication games, advertising, political media, and social learning. The only prerequisite is…
Descriptors: Undergraduate Students, Economics Education, Concept Formation, Beliefs
Peer reviewed Peer reviewed
Direct linkDirect link
Lúcio, Patrícia Silva; Vandekerckhove, Joachim; Polanczyk, Guilherme V.; Cogo-Moreira, Hugo – Journal of Psychoeducational Assessment, 2021
The present study compares the fit of two- and three-parameter logistic (2PL and 3PL) models of item response theory in the performance of preschool children on the Raven's Colored Progressive Matrices. The test of Raven is widely used for evaluating nonverbal intelligence of factor g. Studies comparing models with real data are scarce on the…
Descriptors: Guessing (Tests), Item Response Theory, Test Validity, Preschool Children
Peer reviewed Peer reviewed
Direct linkDirect link
Marcoulides, Katerina M. – Measurement: Interdisciplinary Research and Perspectives, 2018
This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Carly Oddleifson; Stephen Kilgus; David A. Klingbeil; Alexander D. Latham; Jessica S. Kim; Ishan N. Vengurlekar – Grantee Submission, 2025
The purpose of this study was to conduct a conceptual replication of Pendergast et al.'s (2018) study that examined the diagnostic accuracy of a nomogram procedure, also known as a naive Bayesian approach. The specific naive Bayesian approach combined academic and social-emotional and behavioral (SEB) screening data to predict student performance…
Descriptors: Bayesian Statistics, Accuracy, Social Emotional Learning, Diagnostic Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Measurement: Interdisciplinary Research and Perspectives, 2018
Producers and consumers of test scores are increasingly concerned about fraudulent behavior before and during the test. There exist several statistical or psychometric methods for detecting fraudulent behavior on tests. This paper provides a review of the Bayesian approaches among them. Four hitherto-unpublished real data examples are provided to…
Descriptors: Ethics, Cheating, Student Behavior, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Peralta, Montserrat; Alarcon, Rosa; Pichara, Karim E.; Mery, Tomas; Cano, Felipe; Bozo, Jorge – IEEE Transactions on Learning Technologies, 2018
Educational resources can be easily found on the Web. Most search engines base their algorithms on a resource's text or popularity, requiring teachers to navigate the results until they find an appropriate resource. This makes searching for resources a tedious and cumbersome task. Specialized repositories contain resources that are annotated with…
Descriptors: Educational Resources, Metadata, Foreign Countries, Bayesian Statistics
Makela, Susanna; Si, Yajuan; Gelman, Andrew – Grantee Submission, 2018
Cluster sampling is common in survey practice, and the corresponding inference has been predominantly design-based. We develop a Bayesian framework for cluster sampling and account for the design effect in the outcome modeling. We consider a two-stage cluster sampling design where the clusters are first selected with probability proportional to…
Descriptors: Bayesian Statistics, Statistical Inference, Sampling, Probability
Sinharay, Sandip – Grantee Submission, 2018
Producers and consumers of test scores are increasingly concerned about fraudulent behavior before and during the test. There exist several statistical or psychometric methods for detecting fraudulent behavior on tests. This paper provides a review of the Bayesian approaches among them. Four hitherto-unpublished real data examples are provided to…
Descriptors: Ethics, Cheating, Student Behavior, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Montero, Shirly; Arora, Akshit; Kelly, Sean; Milne, Brent; Mozer, Michael – International Educational Data Mining Society, 2018
Personalized learning environments requiring the elicitation of a student's knowledge state have inspired researchers to propose distinct models to understand that knowledge state. Recently, the spotlight has shone on comparisons between traditional, interpretable models such as Bayesian Knowledge Tracing (BKT) and complex, opaque neural network…
Descriptors: Artificial Intelligence, Individualized Instruction, Knowledge Level, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yonggang; Zheng, Qiujie; Quinn, Daniel – Journal of Statistics and Data Science Education, 2023
We present an instructional approach to teaching causal inference using Bayesian networks and "do"-Calculus, which requires less prerequisite knowledge of statistics than existing approaches and can be consistently implemented in beginner to advanced levels courses. Moreover, this approach aims to address the central question in causal…
Descriptors: Bayesian Statistics, Learning Motivation, Calculus, Advanced Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Günhan, Burak Kürsad; Röver, Christian; Friede, Tim – Research Synthesis Methods, 2020
Meta-analyses of clinical trials targeting rare events face particular challenges when the data lack adequate numbers of events for all treatment arms. Especially when the number of studies is low, standard random-effects meta-analysis methods can lead to serious distortions because of such data sparsity. To overcome this, we suggest the use of…
Descriptors: Meta Analysis, Medical Research, Drug Therapy, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
How, Meng-Leong; Hung, Wei Loong David – Education Sciences, 2019
Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students. However, educational stakeholders are required by policy-makers to conduct an independent evaluation of the AI-ALS using a small sample size in a pilot study, before that AI-ALS can be approved…
Descriptors: Stakeholders, Artificial Intelligence, Bayesian Statistics, Probability
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  25