Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 16 |
| Since 2017 (last 10 years) | 38 |
| Since 2007 (last 20 years) | 106 |
Descriptor
| Monte Carlo Methods | 167 |
| Probability | 167 |
| Simulation | 46 |
| Computation | 37 |
| Statistical Analysis | 36 |
| Models | 34 |
| Item Response Theory | 28 |
| Bayesian Statistics | 26 |
| Markov Processes | 26 |
| Comparative Analysis | 25 |
| Sample Size | 24 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Practitioners | 10 |
| Researchers | 7 |
| Teachers | 6 |
| Students | 1 |
Location
| Australia | 1 |
| Denmark | 1 |
| Germany | 1 |
| Italy | 1 |
| Netherlands | 1 |
| New York | 1 |
| Pennsylvania (Pittsburgh) | 1 |
| South Carolina | 1 |
| Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Early Childhood Longitudinal… | 4 |
| National Assessment of… | 3 |
| Trends in International… | 2 |
| Early Childhood Environment… | 1 |
| National Longitudinal Study… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan – Educational and Psychological Measurement, 2016
Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…
Descriptors: Statistical Analysis, Change, Thinking Skills, Measurement
Thur, Scott M. – ProQuest LLC, 2015
The purpose of this study was to measure decision-making influences within RtI teams. The study examined the factors that influence school personnel involved in three areas of RtI: determining which RtI measures and tools teams select and implement (i.e. Measures and Tools), evaluating the data-driven decisions that are made based on the…
Descriptors: Decision Making, Response to Intervention, Teamwork, Data
Huang, Hung-Yu; Wang, Wen-Chung – Journal of Educational Measurement, 2014
The DINA (deterministic input, noisy, and gate) model has been widely used in cognitive diagnosis tests and in the process of test development. The outcomes known as slip and guess are included in the DINA model function representing the responses to the items. This study aimed to extend the DINA model by using the random-effect approach to allow…
Descriptors: Models, Guessing (Tests), Probability, Ability
Culpepper, Steven Andrew – Journal of Educational and Behavioral Statistics, 2015
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Descriptors: Bayesian Statistics, Models, Sampling, Computation
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Mair, Patrick; Satorra, Albert; Bentler, Peter M. – Multivariate Behavioral Research, 2012
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Descriptors: Structural Equation Models, Data, Monte Carlo Methods, Probability
Islam, Muhammad Faysal – ProQuest LLC, 2013
Cloud computing offers the advantage of on-demand, reliable and cost efficient computing solutions without the capital investment and management resources to build and maintain in-house data centers and network infrastructures. Scalability of cloud solutions enable consumers to upgrade or downsize their services as needed. In a cloud environment,…
Descriptors: Risk Assessment, Statistical Analysis, Reliability, Computer Networks
Kahle, David – Journal of Statistics Education, 2014
In this article, I introduce a novel applet ("module") for exploring probability distributions, their samples, and various related statistical concepts. The module is primarily designed to be used by the instructor in the introductory course, but it can be used far beyond it as well. It is a free, cross-platform, stand-alone interactive…
Descriptors: Monte Carlo Methods, Learning Modules, Probability, Statistical Distributions
Kaplan, David; Chen, Jianshen – Society for Research on Educational Effectiveness, 2013
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Descriptors: Bayesian Statistics, Models, Probability, Monte Carlo Methods
Stewart, Wayne; Stewart, Sepideh – PRIMUS, 2014
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Descriptors: Markov Processes, Monte Carlo Methods, College Mathematics, Mathematics Instruction
Rickles, Jordan H. – Society for Research on Educational Effectiveness, 2012
The study is designed to demonstrate and test the utility of the proposed two-stage matching method compared to other analytic methods traditionally employed for multisite observational studies. More specifically, the study addresses the following research questions: (1) How do different specifications of the matching method influence covariate…
Descriptors: Probability, Statistical Analysis, Computation, Observation
Bellara, Aarti P. – ProQuest LLC, 2013
Propensity score analysis has been used to minimize the selection bias in observational studies to identify causal relationships. A propensity score is an estimate of an individual's probability of being placed in a treatment group given a set of covariates. Propensity score analysis aims to use the estimate to create balanced groups, akin to a…
Descriptors: Scores, Probability, Monte Carlo Methods, Statistical Analysis
Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand – International Journal of Mathematical Education in Science and Technology, 2017
The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data…
Descriptors: Calculus, Probability, Data Analysis, Computation
Kelcey, Benjamin – Society for Research on Educational Effectiveness, 2011
A central issue in nonexperimental studies is the identification of comparable individuals (e.g. students) to remove selection bias. One such increasingly common method to identify comparable individuals and address selection bias is the propensity score (PS). PS methods rely on a model of the treatment assignment to identify comparable…
Descriptors: Probability, Selection, Bias, Monte Carlo Methods
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics

Peer reviewed
Direct link
