NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 46 to 60 of 370 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Mulder, J.; Raftery, A. E. – Sociological Methods & Research, 2022
The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC, however, is not suitable for evaluating models with order constraints on the parameters of interest. This article explores two extensions of the BIC for evaluating order-constrained models, one where a…
Descriptors: Models, Social Science Research, Programming Languages, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Huajie; Liu, Teng; Zhang, Yueqin – International Journal of Distance Education Technologies, 2020
This study aims to create learning path navigation for target learners by discovering the correlation among micro-learning units. In this study, the learning path is defined as a sequence of learning units used to realize a learning goal, and a period used for realizing the learning goal is regarded as a learning cycle. Furthermore, the learning…
Descriptors: Correlation, Distance Education, Efficiency, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Wagner, Richard K.; Moxley, Jerad; Schatschneider, Chris; Zirps, Fotena A. – Scientific Studies of Reading, 2023
Purpose: Bayesian-based models for diagnosis are common in medicine but have not been incorporated into identification models for dyslexia. The purpose of the present study was to evaluate Bayesian identification models that included a broader set of predictors and that capitalized on recent developments in modeling the prevalence of dyslexia.…
Descriptors: Bayesian Statistics, Identification, Dyslexia, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Verhavert, San; Bouwer, Renske; Donche, Vincent; De Maeyer, Sven – Assessment in Education: Principles, Policy & Practice, 2019
Comparative Judgement (CJ) aims to improve the quality of performance-based assessments by letting multiple assessors judge pairs of performances. CJ is generally associated with high levels of reliability, but there is also a large variation in reliability between assessments. This study investigates which assessment characteristics influence the…
Descriptors: Meta Analysis, Reliability, Comparative Analysis, Value Judgment
Peer reviewed Peer reviewed
Direct linkDirect link
CadwalladerOlsker, Todd – Mathematics Teacher, 2019
Students studying statistics often misunderstand what statistics represent. Some of the most well-known misunderstandings of statistics revolve around null hypothesis significance testing. One pervasive misunderstanding is that the calculated p-value represents the probability that the null hypothesis is true, and that if p < 0.05, there is…
Descriptors: Statistics, Mathematics Education, Misconceptions, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Kelter, Riko – Measurement: Interdisciplinary Research and Perspectives, 2020
Survival analysis is an important analytic method in the social and medical sciences. Also known under the name time-to-event analysis, this method provides parameter estimation and model fitting commonly conducted via maximum-likelihood. Bayesian survival analysis offers multiple advantages over the frequentist approach for measurement…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Programming Languages, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Erickson, Tim – Teaching Statistics: An International Journal for Teachers, 2017
Understanding a Bayesian perspective demands comfort with conditional probability and with probabilities that appear to change as we acquire additional information. This paper suggests a simple context in conditional probability that helps develop the understanding students would need for a successful introduction to Bayesian reasoning.
Descriptors: Bayesian Statistics, Probability, Introductory Courses, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Rezaei, Mohammadsadegh; Bobarshad, Hossein; Badie, Kambiz – Interactive Learning Environments, 2021
The development of information technology and social networks has created new opportunities to access lifelong learning in the form of informal learning. In an informal learning environment, learning takes place via Communities of Practice (CoP). The learning success factors in online CoPs are learners' similarity in learning interests and…
Descriptors: Prediction, Electronic Learning, Communities of Practice, Information Technology
Batley, Prathiba Natesan; Minka, Tom; Hedges, Larry Vernon – Grantee Submission, 2020
Immediacy is one of the necessary criteria to show strong evidence of treatment effect in single case experimental designs (SCEDs). With the exception of Natesan and Hedges (2017) no inferential statistical tool has been used to demonstrate or quantify it until now. We investigate and quantify immediacy by treating the change-points between the…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Statistical Inference, Markov Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  25