Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 37 |
| Since 2017 (last 10 years) | 111 |
| Since 2007 (last 20 years) | 261 |
Descriptor
| Bayesian Statistics | 370 |
| Probability | 370 |
| Models | 120 |
| Statistical Analysis | 74 |
| Prediction | 58 |
| Comparative Analysis | 46 |
| Simulation | 46 |
| Statistical Inference | 46 |
| Computation | 42 |
| Inferences | 42 |
| Classification | 41 |
| More ▼ | |
Source
Author
| Mislevy, Robert J. | 9 |
| Griffiths, Thomas L. | 8 |
| Wagenmakers, Eric-Jan | 7 |
| Sinharay, Sandip | 6 |
| Lee, Michael D. | 5 |
| Tenenbaum, Joshua B. | 5 |
| Gelman, Andrew | 4 |
| Johnson, Matthew S. | 4 |
| Levy, Roy | 4 |
| Satake, Eiki | 4 |
| Brown, Scott D. | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 11 |
| Teachers | 4 |
| Practitioners | 3 |
| Students | 1 |
Location
| Australia | 8 |
| Canada | 4 |
| Brazil | 2 |
| California | 2 |
| France | 2 |
| Spain | 2 |
| United Kingdom (England) | 2 |
| California (Santa Barbara) | 1 |
| Chile | 1 |
| Europe | 1 |
| Germany | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shiffrin, Richard M.; Lee, Michael D.; Kim, Woojae; Wagenmakers, Eric-Jan – Cognitive Science, 2008
This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues…
Descriptors: Bayesian Statistics, Generalization, Sciences, Models
Glas, Cees A. W.; Pimentel, Jonald L. – Educational and Psychological Measurement, 2008
In tests with time limits, items at the end are often not reached. Usually, the pattern of missing responses depends on the ability level of the respondents; therefore, missing data are not ignorable in statistical inference. This study models data using a combination of two item response theory (IRT) models: one for the observed response data and…
Descriptors: Intelligence Tests, Statistical Inference, Item Response Theory, Modeling (Psychology)
Hara, Motoaki – ProQuest LLC, 2010
Despite having drawn from empirical evidence and cumulative prior expertise in the formulation of research questions as well as study design, each study is treated as a stand-alone product rather than positioned within a sequence of cumulative evidence. While results of prior studies are typically cited within the body of prior literature review,…
Descriptors: Expertise, Evidence, Substance Abuse, Identification
Peer reviewedLecoutre, Bruno; Charron, Camilo – Journal of Educational and Behavioral Statistics, 2000
Illustrates procedures for prediction analysis in 2 X 2 contingency tables through the analyses of solutions of six types of problems associated with the acquisition of fractions. Reviews and extends confidence interval procedures previously proposed for an index of predictive efficiency of implication hypotheses. Compares frequentist coverage…
Descriptors: Bayesian Statistics, Hypothesis Testing, Prediction, Probability
Nelson, Jonathan D. – Psychological Review, 2007
Reports an error in "Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and Information Gain" by Jonathan D. Nelson (Psychological Review, 2005[Oct], Vol 112[4], 979-999). In Table 13, the data should indicate that 7% of females had short hair and 93% of females had long hair. The calculations and discussion in the article…
Descriptors: Probability, Females, Norms, Bayesian Statistics
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognition, 2007
People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…
Descriptors: Probability, Statistical Inference, Bayesian Statistics, Theories
Peer reviewedSingh, R. S. – Journal of Multivariate Analysis, 1976
A class of estimators which are asymptotically unbiased and mean square consistent are exhibited. Theorems giving necessary and sufficient conditions for uniform asymptotic unbiasedness and for mean square consistency are presented along with applications of the estimator to certain statistical problems. (Author/RC)
Descriptors: Bayesian Statistics, Nonparametric Statistics, Probability, Statistical Bias
Tague, Jean M. – Information Storage and Retrieval, 1973
A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…
Descriptors: Bayesian Statistics, Information Retrieval, Mathematical Models, Probability
Peer reviewedChen, James J.; Novick, Melvin K. – Journal of Educational Statistics, 1982
A least squares statistical procedure for fitting utility functions is extended to truncated normal and extended beta functions. Implications for educational decision-making are discussed. (JKS)
Descriptors: Bayesian Statistics, Least Squares Statistics, Probability, Selection
Peer reviewedVos, Hans J. – Journal of Educational and Behavioral Statistics, 1999
Formulates optimal sequential rules for mastery testing using an approach derived from Bayesian sequential decision theory to consider both threshold and linear loss structures. Adopts the binomial probability distribution as the psychometric model. Provides an empirical example for concept-learning in medicine. (SLD)
Descriptors: Bayesian Statistics, Equations (Mathematics), Mastery Tests, Probability
Peer reviewedMeulders, Michel; De Boeck, Paul; Van Mechelen, Iven; Gelman, Andrew; Maris, Eric – Journal of Educational and Behavioral Statistics, 2001
Presents a fully Bayesian analysis for the Probability Matrix Decomposition (PMD) model using the Gibbs sampler. Identifies the advantages of this approach and illustrates the approach by applying the PMD model to opinions of respondents from different countries concerning the possibility of contracting AIDS in a specific situation. (SLD)
Descriptors: Bayesian Statistics, Matrices, Probability, Psychometrics
Lee, Michael D.; Wagenmakers, Eric-Jan – Psychological Review, 2005
This paper comments on the response offered by Trafimow on Lee and Wagenmakers comments on Trafimow's original article. It seems our comment should have made it clear that the objective Bayesian approach we advocate views probabilities neither as relative frequencies nor as belief states, but as degrees of plausibility assigned to propositions in…
Descriptors: Researchers, Probability, Statistical Inference, Bayesian Statistics
Peer reviewedWolter, David G.; Earl, Robert W. – Psychometrika, 1972
Descriptors: Bayesian Statistics, Learning, Mathematical Models, Probability
Peer reviewedGeisser, Seymour; Kappenman, Russell F. – Psychometrika, 1971
Descriptors: Bayesian Statistics, Mathematics, Probability, Profiles
Kruschke, John K. – Psychological Review, 2006
A scheme is described for locally Bayesian parameter updating in models structured as successions of component functions. The essential idea is to back-propagate the target data to interior modules, such that an interior component's target is the input to the next component that maximizes the probability of the next component's target. Each layer…
Descriptors: Bayesian Statistics, Models, Probability, Associative Learning

Direct link
