Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 37 |
| Since 2017 (last 10 years) | 111 |
| Since 2007 (last 20 years) | 261 |
Descriptor
| Bayesian Statistics | 370 |
| Probability | 370 |
| Models | 120 |
| Statistical Analysis | 74 |
| Prediction | 58 |
| Comparative Analysis | 46 |
| Simulation | 46 |
| Statistical Inference | 46 |
| Computation | 42 |
| Inferences | 42 |
| Classification | 41 |
| More ▼ | |
Source
Author
| Mislevy, Robert J. | 9 |
| Griffiths, Thomas L. | 8 |
| Wagenmakers, Eric-Jan | 7 |
| Sinharay, Sandip | 6 |
| Lee, Michael D. | 5 |
| Tenenbaum, Joshua B. | 5 |
| Gelman, Andrew | 4 |
| Johnson, Matthew S. | 4 |
| Levy, Roy | 4 |
| Satake, Eiki | 4 |
| Brown, Scott D. | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 11 |
| Teachers | 4 |
| Practitioners | 3 |
| Students | 1 |
Location
| Australia | 8 |
| Canada | 4 |
| Brazil | 2 |
| California | 2 |
| France | 2 |
| Spain | 2 |
| United Kingdom (England) | 2 |
| California (Santa Barbara) | 1 |
| Chile | 1 |
| Europe | 1 |
| Germany | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ross, Andrew M. – College Mathematics Journal, 2012
To compute the probability of having a disease, given a positive test result, is a standard probability problem. The sensitivity and specificity of the test must be given and the prevalence of the disease. We ask how a test-maker might determine the tradeoff between sensitivity and specificity. Adding hypothetical costs for detecting or failing to…
Descriptors: Diseases, Probability, Bayesian Statistics, Test Construction
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Lee, HwaYoung; Beretvas, S. Natasha – Educational and Psychological Measurement, 2014
Conventional differential item functioning (DIF) detection methods (e.g., the Mantel-Haenszel test) can be used to detect DIF only across observed groups, such as gender or ethnicity. However, research has found that DIF is not typically fully explained by an observed variable. True sources of DIF may include unobserved, latent variables, such as…
Descriptors: Item Analysis, Factor Structure, Bayesian Statistics, Goodness of Fit
Timmons, Kristy; Pelletier, Janette – Early Child Development and Care, 2016
In this study, we explored the influence of kindergarten children's perspectives of school on their literacy and self-regulation outcomes. Children's early perspectives were captured in a three-question, finger-puppet interview. Responses to the interview questions were coded thematically as being academic and/or social in nature, and were…
Descriptors: Childhood Attitudes, Kindergarten, Longitudinal Studies, Puppetry
Najafabadi, Maryam Omidi; Zamani, Maryam; Mirdamadi, Mehdi – Journal of Education for Business, 2016
The authors used Ajzen's theory of planned behavior and Shapero's entrepreneurial event model as well as entrepreneurial cognition theory to identify the relationship among entrepreneurial skills, self-efficacy, attitudes toward entrepreneurship, psychological traits, social norms, perceived desirability, social support, and entrepreneurial…
Descriptors: Models, Entrepreneurship, Agricultural Education, Intention
Balasooriya, Uditha; Li, Jackie; Low, Chan Kee – Australian Senior Mathematics Journal, 2012
For any density function (or probability function), there always corresponds a "cumulative distribution function" (cdf). It is a well-known mathematical fact that the cdf is more general than the density function, in the sense that for a given distribution the former may exist without the existence of the latter. Nevertheless, while the…
Descriptors: Computation, Probability, Mathematics, Mathematics Curriculum
Gonzalez-Brenes, Jose P.; Mostow, Jack – International Educational Data Mining Society, 2012
This work describes a unified approach to two problems previously addressed separately in Intelligent Tutoring Systems: (i) Cognitive Modeling, which factorizes problem solving steps into the latent set of skills required to perform them; and (ii) Student Modeling, which infers students' learning by observing student performance. The practical…
Descriptors: Intelligent Tutoring Systems, Academic Achievement, Bayesian Statistics, Tutors
Xu, Yanbo; Mostow, Jack – International Educational Data Mining Society, 2012
A long-standing challenge for knowledge tracing is how to update estimates of multiple subskills that underlie a single observable step. We characterize approaches to this problem by how they model knowledge tracing, fit its parameters, predict performance, and update subskill estimates. Previous methods allocated blame or credit among subskills…
Descriptors: Teaching Methods, Comparative Analysis, Prediction, Mathematics
Huang, David Y. C.; Lanza, H. Isabella; Murphy, Debra A.; Hser, Yih-Ing – International Journal of Behavioral Development, 2012
This study used data from 5,382 adolescents from the 1997 United States (US) National Longitudinal Survey of Youth (NLSY97) to investigate developmental pathways of alcohol use, marijuana use, sexual risk behaviors, and delinquency across ages 14 to 20; examine interrelationships among these risk behaviors across adolescence; and evaluate…
Descriptors: Adolescents, Drinking, Depression (Psychology), Marijuana
Gopnik, Alison; Wellman, Henry M. – Psychological Bulletin, 2012
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Descriptors: Causal Models, Theory of Mind, Probability, Cognitive Development
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics
Stone, Clement A.; Tang, Yun – Practical Assessment, Research & Evaluation, 2013
Propensity score applications are often used to evaluate educational program impact. However, various options are available to estimate both propensity scores and construct comparison groups. This study used a student achievement dataset with commonly available covariates to compare different propensity scoring estimation methods (logistic…
Descriptors: Comparative Analysis, Probability, Sample Size, Program Evaluation
Abayomi, Kobi; Pizarro, Gonzalo – Social Indicators Research, 2013
We offer a straightforward framework for measurement of progress, across many dimensions, using cross-national social indices, which we classify as linear combinations of multivariate country level data onto a univariate score. We suggest a Bayesian approach which yields probabilistic (confidence type) intervals for the point estimates of country…
Descriptors: Bayesian Statistics, Intervals, Guidelines, Measurement
San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel – Psychometrika, 2011
We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…
Descriptors: Identification, Probability, Item Response Theory, Bayesian Statistics
Rusconi, Patrice; Marelli, Marco; D'Addario, Marco; Russo, Selena; Cherubini, Paolo – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014
Evidence evaluation is a crucial process in many human activities, spanning from medical diagnosis to impression formation. The present experiments investigated which, if any, normative model best conforms to people's intuition about the value of the obtained evidence. Psychologists, epistemologists, and philosophers of science have proposed…
Descriptors: Experimental Psychology, Models, Intuition, Evidence

Peer reviewed
Direct link
