Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 37 |
| Since 2017 (last 10 years) | 111 |
| Since 2007 (last 20 years) | 261 |
Descriptor
| Bayesian Statistics | 370 |
| Probability | 370 |
| Models | 120 |
| Statistical Analysis | 74 |
| Prediction | 58 |
| Comparative Analysis | 46 |
| Simulation | 46 |
| Statistical Inference | 46 |
| Computation | 42 |
| Inferences | 42 |
| Classification | 41 |
| More ▼ | |
Source
Author
| Mislevy, Robert J. | 9 |
| Griffiths, Thomas L. | 8 |
| Wagenmakers, Eric-Jan | 7 |
| Sinharay, Sandip | 6 |
| Lee, Michael D. | 5 |
| Tenenbaum, Joshua B. | 5 |
| Gelman, Andrew | 4 |
| Johnson, Matthew S. | 4 |
| Levy, Roy | 4 |
| Satake, Eiki | 4 |
| Brown, Scott D. | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 11 |
| Teachers | 4 |
| Practitioners | 3 |
| Students | 1 |
Location
| Australia | 8 |
| Canada | 4 |
| Brazil | 2 |
| California | 2 |
| France | 2 |
| Spain | 2 |
| United Kingdom (England) | 2 |
| California (Santa Barbara) | 1 |
| Chile | 1 |
| Europe | 1 |
| Germany | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Phelan, Julia; Ing, Marsha; Nylund-Gibson, Karen; Brown, Richard S. – Journal of STEM Education: Innovations and Research, 2017
This study extends current research by organizing information about students' expectancy-value achievement motivation, in a way that helps parents and teachers identify specific entry points to encourage and support students' science aspirations. This study uses latent class analysis to describe underlying differences in ability beliefs, task…
Descriptors: Self Concept, Science Instruction, Middle School Students, Multivariate Analysis
Denison, Stephanie; Reed, Christie; Xu, Fei – Developmental Psychology, 2013
How do people make rich inferences from such sparse data? Recent research has explored this inferential ability by investigating probabilistic reasoning in infancy. For example, 8- and 11-month-old infants can make inferences from samples to populations and vice versa (Denison & Xu, 2010a; Xu & Denison, 2009; Xu & Garcia, 2008a). The…
Descriptors: Probability, Infants, Inferences, Young Children
Andrade, Alejandro; Danish, Joshua A.; Maltese, Adam V. – Journal of Learning Analytics, 2017
Interactive learning environments with body-centric technologies lie at the intersection of the design of embodied learning activities and multimodal learning analytics. Sensing technologies can generate large amounts of fine-grained data automatically captured from student movements. Researchers can use these fine-grained data to create a…
Descriptors: Measurement, Interaction, Models, Educational Environment
Hall, Stacey; Phang, Sen Han; Schaefer, Jeffrey P.; Ghali, William; Wright, Bruce; McLaughlin, Kevin – Advances in Health Sciences Education, 2014
Although the process of diagnosing invariably begins with a heuristic, we encourage our learners to support their diagnoses by analytical cognitive processes, such as Bayesian reasoning, in an attempt to mitigate the effects of heuristics on diagnosing. There are, however, limited data on the use ± impact of Bayesian reasoning on the accuracy of…
Descriptors: Computation, Probability, Pretests Posttests, Heuristics
Crawford, Aaron – ProQuest LLC, 2014
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Descriptors: Bayesian Statistics, Networks, Models, Goodness of Fit
Eliasquevici, Marianne Kogut; da Rocha Seruffo, Marcos César; Resque, Sônia Nazaré Fernandes – International Journal of Distance Education Technologies, 2017
This article presents a study on the variables promoting student retention in distance undergraduate courses at Federal University of Pará, aiming to help school managers minimize student attrition and maximize retention until graduation. The theoretical background is based on Rovai's Composite Model and the methodological approach is conditional…
Descriptors: Distance Education, Case Studies, Academic Persistence, Undergraduate Students
Strother, Lars; Kubovy, Michael – Journal of Experimental Psychology: Human Perception and Performance, 2012
We perceive structure through a process of perceptual organization. Here we report a new perceptual organization phenomenon--the facilitation of visual grouping by global curvature. Observers viewed patterns that they perceived as organized into collections of curves. The patterns were perceptually ambiguous such that the perceived orientation of…
Descriptors: Vision, Proximity, Psychology, Bayesian Statistics
Brady, Timothy F.; Tenenbaum, Joshua B. – Psychological Review, 2013
When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…
Descriptors: Short Term Memory, Visual Perception, Change, Identification
Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard – Developmental Science, 2014
Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive…
Descriptors: Infants, Eye Movements, Infant Behavior, Cognitive Development
Jenny, Mirjam A.; Rieskamp, Jörg; Nilsson, Håkan – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014
Judging whether multiple events will co-occur is an important aspect of everyday decision making. The underlying probabilities of occurrence are usually unknown and have to be inferred from experience. Using a rigorous, quantitative model comparison, we investigate how people judge the conjunctive probabilities of multiple events to co-occur. In 2…
Descriptors: Experimental Psychology, Decision Making, Probability, Models
Jones, W. Paul – Educational and Psychological Measurement, 2014
A study in a university clinic/laboratory investigated adaptive Bayesian scaling as a supplement to interpretation of scores on the Mini-IPIP. A "probability of belonging" in categories of low, medium, or high on each of the Big Five traits was calculated after each item response and continued until all items had been used or until a…
Descriptors: Personality Traits, Personality Measures, Bayesian Statistics, Clinics
Wulff, Shaun S.; Robinson, Timothy J. – Journal of Statistics Education, 2014
Bayesian methodology continues to be widely used in statistical applications. As a result, it is increasingly important to introduce students to Bayesian thinking at early stages in their mathematics and statistics education. While many students in upper level probability courses can recite the differences in the Frequentist and Bayesian…
Descriptors: Bayesian Statistics, Probability, College Mathematics, Mathematics Instruction
Bramley, Neil R.; Lagnado, David A.; Speekenbrink, Maarten – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Interacting with a system is key to uncovering its causal structure. A computational framework for interventional causal learning has been developed over the last decade, but how real causal learners might achieve or approximate the computations entailed by this framework is still poorly understood. Here we describe an interactive computer task in…
Descriptors: Intervention, Memory, Cognitive Processes, Models
Fenton, Norman; Neil, Martin; Lagnado, David A. – Cognitive Science, 2013
A Bayesian network (BN) is a graphical model of uncertainty that is especially well suited to legal arguments. It enables us to visualize and model dependencies between different hypotheses and pieces of evidence and to calculate the revised probability beliefs about all uncertain factors when any piece of new evidence is presented. Although BNs…
Descriptors: Networks, Bayesian Statistics, Persuasive Discourse, Models
Vanpaemel, Wolf; Lee, Michael D. – Psychological Bulletin, 2012
Wills and Pothos (2012) reviewed approaches to evaluating formal models of categorization, raising a series of worthwhile issues, challenges, and goals. Unfortunately, in discussing these issues and proposing solutions, Wills and Pothos (2012) did not consider Bayesian methods in any detail. This means not only that their review excludes a major…
Descriptors: Classification, Program Evaluation, Bayesian Statistics, Models

Peer reviewed
Direct link
