NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Clemens Draxler; Andreas Kurz; Can Gürer; Jan Philipp Nolte – Journal of Educational and Behavioral Statistics, 2024
A modified and improved inductive inferential approach to evaluate item discriminations in a conditional maximum likelihood and Rasch modeling framework is suggested. The new approach involves the derivation of four hypothesis tests. It implies a linear restriction of the assumed set of probability distributions in the classical approach that…
Descriptors: Inferences, Test Items, Item Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hanif Akhtar – International Society for Technology, Education, and Science, 2023
For efficiency, Computerized Adaptive Test (CAT) algorithm selects items with the maximum information, typically with a 50% probability of being answered correctly. However, examinees may not be satisfied if they only correctly answer 50% of the items. Researchers discovered that changing the item selection algorithms to choose easier items (i.e.,…
Descriptors: Success, Probability, Computer Assisted Testing, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Leventhal, Brian C.; Ezike, Nnamdi C. – Measurement: Interdisciplinary Research and Perspectives, 2020
Data simulation and Monte Carlo simulation studies are important skills for researchers and practitioners of educational and psychological measurement, but there are few resources on the topic specific to item response theory. Even fewer resources exist on the statistical software techniques to implement simulation studies. This article presents…
Descriptors: Monte Carlo Methods, Item Response Theory, Simulation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Maeda, Hotaka; Zhang, Bo – International Journal of Testing, 2017
The omega (?) statistic is reputed to be one of the best indices for detecting answer copying on multiple choice tests, but its performance relies on the accurate estimation of copier ability, which is challenging because responses from the copiers may have been contaminated. We propose an algorithm that aims to identify and delete the suspected…
Descriptors: Cheating, Test Items, Mathematics, Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Thompson, Nathan A. – Practical Assessment, Research & Evaluation, 2011
Computerized classification testing (CCT) is an approach to designing tests with intelligent algorithms, similar to adaptive testing, but specifically designed for the purpose of classifying examinees into categories such as "pass" and "fail." Like adaptive testing for point estimation of ability, the key component is the…
Descriptors: Adaptive Testing, Computer Assisted Testing, Classification, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Atar, Burcu; Kamata, Akihito – Hacettepe University Journal of Education, 2011
The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…
Descriptors: Test Bias, Sample Size, Monte Carlo Methods, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Klockars, Alan J.; Lee, Yoonsun – Journal of Educational Measurement, 2008
Monte Carlo simulations with 20,000 replications are reported to estimate the probability of rejecting the null hypothesis regarding DIF using SIBTEST when there is DIF present and/or when impact is present due to differences on the primary dimension to be measured. Sample sizes are varied from 250 to 2000 and test lengths from 10 to 40 items.…
Descriptors: Test Bias, Test Length, Reference Groups, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Henson, Robert; Roussos, Louis; Douglas, Jeff; He, Xuming – Applied Psychological Measurement, 2008
Cognitive diagnostic models (CDMs) model the probability of correctly answering an item as a function of an examinee's attribute mastery pattern. Because estimation of the mastery pattern involves more than a continuous measure of ability, reliability concepts introduced by classical test theory and item response theory do not apply. The cognitive…
Descriptors: Diagnostic Tests, Classification, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Nylund, Karen L.; Asparouhov, Tihomir; Muthen, Bengt O. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study…
Descriptors: Test Items, Monte Carlo Methods, Program Effectiveness, Data Analysis
Papa, Frank J.; Schumacker, Randall E. – 1995
Measures of the robustness of disease class-specific diagnostic concepts could play a central role in training programs designed to assure the development of diagnostic competence. In the pilot study, the authors used disease/sign-symptom conditional probability estimates, Monte Carlo procedures, and artificial intelligence (AI) tools to create…
Descriptors: Adaptive Testing, Artificial Intelligence, Classification, Clinical Diagnosis