Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 3 |
Descriptor
| Bayesian Statistics | 3 |
| Probability | 3 |
| Student Behavior | 3 |
| Cheating | 2 |
| Deception | 2 |
| Ethics | 2 |
| High School Students | 2 |
| Prediction | 2 |
| Scores | 2 |
| Tests | 2 |
| Comparative Analysis | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 2 |
| Journal Articles | 1 |
| Reports - Descriptive | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| High Schools | 2 |
| Elementary Education | 1 |
| Grade 8 | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sinharay, Sandip – Measurement: Interdisciplinary Research and Perspectives, 2018
Producers and consumers of test scores are increasingly concerned about fraudulent behavior before and during the test. There exist several statistical or psychometric methods for detecting fraudulent behavior on tests. This paper provides a review of the Bayesian approaches among them. Four hitherto-unpublished real data examples are provided to…
Descriptors: Ethics, Cheating, Student Behavior, Bayesian Statistics
Sinharay, Sandip – Grantee Submission, 2018
Producers and consumers of test scores are increasingly concerned about fraudulent behavior before and during the test. There exist several statistical or psychometric methods for detecting fraudulent behavior on tests. This paper provides a review of the Bayesian approaches among them. Four hitherto-unpublished real data examples are provided to…
Descriptors: Ethics, Cheating, Student Behavior, Bayesian Statistics
Rai, Dovan; Gong, Yue; Beck, Joseph E. – International Working Group on Educational Data Mining, 2009
Student modeling is a widely used approach to make inference about a student's attributes like knowledge, learning, etc. If we wish to use these models to analyze and better understand student learning there are two problems. First, a model's ability to predict student performance is at best weakly related to the accuracy of any one of its…
Descriptors: Data Analysis, Statistical Analysis, Probability, Models

Peer reviewed
Direct link
