NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 107 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Weicong Lyu; Peter M. Steiner – Society for Research on Educational Effectiveness, 2021
Doubly robust (DR) estimators that combine regression adjustments and inverse probability weighting (IPW) are widely used in causal inference with observational data because they are claimed to be consistent when either the outcome or the treatment selection model is correctly specified (Scharfstein et al., 1999). This property of "double…
Descriptors: Robustness (Statistics), Causal Models, Statistical Inference, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Roderick J. Little; James R. Carpenter; Katherine J. Lee – Sociological Methods & Research, 2024
Missing data are a pervasive problem in data analysis. Three common methods for addressing the problem are (a) complete-case analysis, where only units that are complete on the variables in an analysis are included; (b) weighting, where the complete cases are weighted by the inverse of an estimate of the probability of being complete; and (c)…
Descriptors: Foreign Countries, Probability, Robustness (Statistics), Responses
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yonggang; Zheng, Qiujie; Quinn, Daniel – Journal of Statistics and Data Science Education, 2023
We present an instructional approach to teaching causal inference using Bayesian networks and "do"-Calculus, which requires less prerequisite knowledge of statistics than existing approaches and can be consistently implemented in beginner to advanced levels courses. Moreover, this approach aims to address the central question in causal…
Descriptors: Bayesian Statistics, Learning Motivation, Calculus, Advanced Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Kelter, Riko – Measurement: Interdisciplinary Research and Perspectives, 2020
Survival analysis is an important analytic method in the social and medical sciences. Also known under the name time-to-event analysis, this method provides parameter estimation and model fitting commonly conducted via maximum-likelihood. Bayesian survival analysis offers multiple advantages over the frequentist approach for measurement…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Programming Languages, Statistical Inference
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Mortaza Jamshidian; Parsa Jamshidian – Journal of Statistics and Data Science Education, 2024
Using software to teach statistical inference in introductory courses opens the door for methods and practices that are more conceptually appealing to students. With an increasing number of fields requiring competency in statistics including data science, natural and social sciences, public health and more, it is crucial that we as instructors…
Descriptors: Computer Software, Computer Assisted Instruction, Teaching Methods, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sarafoglou, Alexandra; van der Heijden, Anna; Draws, Tim; Cornelisse, Joran; Wagenmakers, Eric-Jan; Marsman, Maarten – Psychology Learning and Teaching, 2022
Current developments in the statistics community suggest that modern statistics education should be structured holistically, that is, by allowing students to work with real data and to answer concrete statistical questions, but also by educating them about alternative frameworks, such as Bayesian inference. In this article, we describe how we…
Descriptors: Bayesian Statistics, Thinking Skills, Undergraduate Students, Psychology
Makela, Susanna; Si, Yajuan; Gelman, Andrew – Grantee Submission, 2018
Cluster sampling is common in survey practice, and the corresponding inference has been predominantly design-based. We develop a Bayesian framework for cluster sampling and account for the design effect in the outcome modeling. We consider a two-stage cluster sampling design where the clusters are first selected with probability proportional to…
Descriptors: Bayesian Statistics, Statistical Inference, Sampling, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Breen, Richard; Bernt Karlson, Kristian; Holm, Anders – Sociological Methods & Research, 2021
The Karlson-Holm-Breen (KHB) method has rapidly become popular as a way of separating the impact of confounding from rescaling when comparing conditional and unconditional parameter estimates in nonlinear probability models such as the logit and probit. In this note, we show that the same estimates can be obtained in a somewhat different way to…
Descriptors: Probability, Models, Computation, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; Huang, Mingya – Large-scale Assessments in Education, 2021
Of critical importance to education policy is monitoring trends in education outcomes over time. In the United States, the National Assessment of Educational Progress (NAEP) has provided long-term trend data since 1970; at the state/jurisdiction level, NAEP has provided long-term trend data since 1996. In addition to the national NAEP, all 50…
Descriptors: Educational Policy, Educational Trends, National Competency Tests, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Binder, Karin; Krauss, Stefan; Schmidmaier, Ralf; Braun, Leah T. – Advances in Health Sciences Education, 2021
When physicians are asked to determine the positive predictive value from the a priori probability of a disease and the sensitivity and false positive rate of a medical test (Bayesian reasoning), it often comes to misjudgments with serious consequences. In daily clinical practice, however, it is not only important that doctors receive a tool with…
Descriptors: Clinical Diagnosis, Efficiency, Probability, Bayesian Statistics
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Lyford, Alexander; Rahr, Thomas; Chen, Tina; Kovach, Benjamin – Teaching Statistics: An International Journal for Teachers, 2019
There is much debate about the place of probability in an introductory statistics course. While students may or may not use probability distributions in their post-collegiate lives, they will likely be faced with day-to-day decisions that require a probabilistic assessment of risk and reward. This paper describes an innovative way to teach…
Descriptors: Probability, Teaching Methods, Statistics, Educational Games
Peer reviewed Peer reviewed
Direct linkDirect link
Gurkan, Gulsah; Benjamini, Yoav; Braun, Henry – Large-scale Assessments in Education, 2021
Employing nested sequences of models is a common practice when exploring the extent to which one set of variables mediates the impact of another set. Such an analysis in the context of logistic regression models confronts two challenges: (1) direct comparisons of coefficients across models are generally biased due to the changes in scale that…
Descriptors: Statistical Inference, Regression (Statistics), Adults, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8