NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 1,043 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Karlson, Kristian Bernt; Popham, Frank; Holm, Anders – Sociological Methods & Research, 2023
This article presents two ways of quantifying confounding using logistic response models for binary outcomes. Drawing on the distinction between marginal and conditional odds ratios in statistics, we define two corresponding measures of confounding (marginal and conditional) that can be recovered from a simple standardization approach. We…
Descriptors: Statistical Analysis, Probability, Standards, Mediation Theory
Peer reviewed Peer reviewed
Direct linkDirect link
San Martín, Ernesto; González, Jorge – Journal of Educational and Behavioral Statistics, 2022
The nonequivalent groups with anchor test (NEAT) design is widely used in test equating. Under this design, two groups of examinees are administered different test forms with each test form containing a subset of common items. Because test takers from different groups are assigned only one test form, missing score data emerge by design rendering…
Descriptors: Tests, Scores, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Widaman, Keith F. – Educational and Psychological Measurement, 2023
The import or force of the result of a statistical test has long been portrayed as consistent with deductive reasoning. The simplest form of deductive argument has a first premise with conditional form, such as p[right arrow]q, which means that "if p is true, then q must be true." Given the first premise, one can either affirm or deny…
Descriptors: Hypothesis Testing, Statistical Analysis, Logical Thinking, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Jose M. Pavía; Rafael Romero – Sociological Methods & Research, 2024
The estimation of RxC ecological inference contingency tables from aggregate data is one of the most salient and challenging problems in the field of quantitative social sciences, with major solutions proposed from both the ecological regression and the mathematical programming frameworks. In recent decades, there has been a drive to find…
Descriptors: Elections, Voting, Social Science Research, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Nobuyuki Hanaki; Jan R. Magnus; Donghoon Yoo – Journal of Statistics and Data Science Education, 2023
Common sense is a dynamic concept and it is natural that our (statistical) common sense lags behind the development of statistical science. What is not so easy to understand is why common sense lags behind as much as it does. We conduct a survey among Japanese students and provide examples and tentative explanations of a number of statistical…
Descriptors: Statistics, Statistics Education, Epistemology, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wendy – Journal of Research on Educational Effectiveness, 2022
Over the past decade, statisticians have developed methods to improve generalizations from nonrandom samples using propensity score methods. While these methods contribute to generalization research, their effectiveness is limited by small sample sizes. Small area estimation is a class of model-based methods that address the imprecision due to…
Descriptors: Generalization, Probability, Sample Size, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Alari, Krissina M.; Kim, Steven B.; Wand, Jeffrey O. – Measurement in Physical Education and Exercise Science, 2021
There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two approaches produce similar estimations and predictions in large-sample studies, their interpretations are different. Bland Altman analysis is a statistical method that is widely used for comparing two methods of measurement. It was originally…
Descriptors: Statistical Analysis, Bayesian Statistics, Measurement, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dragica Ljubisavljevic; Marko Koprivica; Aleksandar Kostic; Vladan Devedžic – International Association for Development of the Information Society, 2023
This paper delves into statistical disparities between human-written and ChatGPT-generated texts, utilizing an analysis of Shannon's equitability values, and token frequency. Our findings indicate that Shannon's equitability can potentially be a differentiating factor between texts produced by humans and those generated by ChatGPT. Additionally,…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Writing (Composition)
Peer reviewed Peer reviewed
Direct linkDirect link
Yi, Zhihui; Schreiber, James B.; Paliliunas, Dana; Barron, Becky F.; Dixon, Mark R. – Journal of Behavioral Education, 2021
The recent commentary by Beaujean and Farmer (2020) on the original paper by Dixon et al. (2019) serves a cautionary tale of selective p-values, the law of small N sizes, and the type-II error. We believe these authors have crafted a somewhat questionable argument in which only 57% of the original Dixon et al. data were re-analyzed, based on a…
Descriptors: Research Problems, Data Analysis, Statistical Analysis, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Barb Bennie; Richard A. Erickson – Journal of Statistics and Data Science Education, 2024
Effective undergraduate statistical education requires training using real-world data. Textbook datasets seldom match the complexities and messiness of real-world data and finding these datasets can be challenging for educators. Consulting and industrial datasets often have nondisclosure agreements. Academic datasets often require subject area…
Descriptors: Undergraduate Students, Statistics Education, Data Science, Earth Science
Peer reviewed Peer reviewed
Direct linkDirect link
Collier, Zachary K.; Leite, Walter L. – Journal of Experimental Education, 2022
Artificial neural networks (NN) can help researchers estimate propensity scores for quasi-experimental estimation of treatment effects because they can automatically detect complex interactions involving many covariates. However, NN is difficult to implement due to the complexity of choosing an algorithm for various treatment levels and monitoring…
Descriptors: Artificial Intelligence, Mentors, Beginning Teachers, Teacher Persistence
Peer reviewed Peer reviewed
Direct linkDirect link
Cassiday, Kristina R.; Cho, Youngmi; Harring, Jeffrey R. – Educational and Psychological Measurement, 2021
Simulation studies involving mixture models inevitably aggregate parameter estimates and other output across numerous replications. A primary issue that arises in these methodological investigations is label switching. The current study compares several label switching corrections that are commonly used when dealing with mixture models. A growth…
Descriptors: Probability, Models, Simulation, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Frömke, Cornelia; Kirstein, Mathia; Zapf, Antonia – Research Synthesis Methods, 2022
The accuracy of a diagnostic test is often expressed using a pair of measures: sensitivity (proportion of test positives among all individuals with target condition) and specificity (proportion of test negatives among all individuals without target condition). If the outcome of a diagnostic test is binary, results from different studies can easily…
Descriptors: Accuracy, Diagnostic Tests, Meta Analysis, Statistical Analysis
Sinharay, Sandip; Johnson, Matthew S. – Journal of Educational and Behavioral Statistics, 2021
Score differencing is one of the six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Sinharay, Sandip; Johnson, Matthew S. – Grantee Submission, 2021
Score differencing is one of six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  70