Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 13 |
Descriptor
| Monte Carlo Methods | 18 |
| Probability | 18 |
| Sampling | 18 |
| Computation | 7 |
| Simulation | 5 |
| Statistical Bias | 5 |
| Statistical Inference | 4 |
| Bayesian Statistics | 3 |
| Comparative Analysis | 3 |
| Correlation | 3 |
| Markov Processes | 3 |
| More ▼ | |
Source
Author
| Abdul Haq | 1 |
| Chen, Yuguo | 1 |
| Collier, Raymond O., Jr. | 1 |
| Culpepper, Steven Andrew | 1 |
| Everitt, B. S. | 1 |
| Fazio, Claudio | 1 |
| Francis L. Huang | 1 |
| Gallitto, Elena | 1 |
| Griffiths, Thomas L. | 1 |
| Guastella, Ivan | 1 |
| Harris, Ian | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 14 |
| Reports - Research | 12 |
| Reports - Descriptive | 2 |
| Dissertations/Theses -… | 1 |
Education Level
| Elementary Education | 2 |
| Higher Education | 2 |
| Early Childhood Education | 1 |
| Elementary Secondary Education | 1 |
| Grade 4 | 1 |
| Kindergarten | 1 |
| Primary Education | 1 |
| Secondary Education | 1 |
Audience
| Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 2 |
| Early Childhood Longitudinal… | 1 |
| Program for International… | 1 |
| Trends in International… | 1 |
What Works Clearinghouse Rating
Abdul Haq – Measurement: Interdisciplinary Research and Perspectives, 2024
This article introduces an innovative sampling scheme, the median sampling (MS), utilizing individual observations over time to efficiently estimate the mean of a process characterized by a symmetric (non-uniform) probability distribution. The mean estimator based on MS is not only unbiased but also boasts enhanced precision compared to its simple…
Descriptors: Sampling, Innovation, Computation, Probability
Umut Atasever; Francis L. Huang; Leslie Rutkowski – Large-scale Assessments in Education, 2025
When analyzing large-scale assessments (LSAs) that use complex sampling designs, it is important to account for probability sampling using weights. However, the use of these weights in multilevel models has been widely debated, particularly regarding their application at different levels of the model. Yet, no consensus has been reached on the best…
Descriptors: Mathematics Tests, International Assessment, Elementary Secondary Education, Foreign Countries
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Qian, Jiahe – ETS Research Report Series, 2017
The variance formula derived for a two-stage sampling design without replacement employs the joint inclusion probabilities in the first-stage selection of clusters. One of the difficulties encountered in data analysis is the lack of information about such joint inclusion probabilities. One way to solve this issue is by applying Hájek's…
Descriptors: Mathematical Formulas, Computation, Sampling, Research Design
Maeda, Hotaka; Zhang, Bo – International Journal of Testing, 2017
The omega (?) statistic is reputed to be one of the best indices for detecting answer copying on multiple choice tests, but its performance relies on the accurate estimation of copier ability, which is challenging because responses from the copiers may have been contaminated. We propose an algorithm that aims to identify and delete the suspected…
Descriptors: Cheating, Test Items, Mathematics, Statistics
Leth-Steensen, Craig; Gallitto, Elena – Educational and Psychological Measurement, 2016
A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…
Descriptors: Mediation Theory, Structural Equation Models, Monte Carlo Methods, Simulation
Culpepper, Steven Andrew – Journal of Educational and Behavioral Statistics, 2015
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Descriptors: Bayesian Statistics, Models, Sampling, Computation
Itang'ata, Mukaria J. J. – ProQuest LLC, 2013
Often researchers face situations where comparative studies between two or more programs are necessary to make causal inferences for informed policy decision-making. Experimental designs employing randomization provide the strongest evidence for causal inferences. However, many pragmatic and ethical challenges may preclude the use of randomized…
Descriptors: Comparative Analysis, Probability, Statistical Bias, Monte Carlo Methods
Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan – Journal of Educational and Behavioral Statistics, 2011
In this article, we consider estimation of parameters of random effects models from samples collected via complex multistage designs. Incorporation of sampling weights is one way to reduce estimation bias due to unequal probabilities of selection. Several weighting methods have been proposed in the literature for estimating the parameters of…
Descriptors: Sampling, Computation, Statistical Bias, Statistical Analysis
Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria – European Journal of Physics, 2012
A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…
Descriptors: Predictive Validity, Quantum Mechanics, Science Education, Science Instruction
Morio, Jerome; Pastel, Rudy; Le Gland, Francois – European Journal of Physics, 2010
Monte Carlo simulations are a classical tool to analyse physical systems. When unlikely events are to be simulated, the importance sampling technique is often used instead of Monte Carlo. Importance sampling has some drawbacks when the problem dimensionality is high or when the optimal importance sampling density is complex to obtain. In this…
Descriptors: Science Instruction, Physics, Simulation, Sampling
Sanchez-Meca, Julio; Marin-Martinez, Fulgencio – Psychological Methods, 2008
One of the main objectives in meta-analysis is to estimate the overall effect size by calculating a confidence interval (CI). The usual procedure consists of assuming a standard normal distribution and a sampling variance defined as the inverse of the sum of the estimated weights of the effect sizes. But this procedure does not take into account…
Descriptors: Intervals, Monte Carlo Methods, Meta Analysis, Effect Size
Collier, Raymond O., Jr.; Larson, Robert C. – Rev Educ Res, 1969
Descriptors: Monte Carlo Methods, Probability, Sampling, Statistics
Peer reviewedSullins, Walter L. – Contemporary Education, 1973
Descriptors: Educational Research, Monte Carlo Methods, Probability, Research Methodology
Chen, Yuguo; Small, Dylan – Psychometrika, 2005
Rasch proposed an exact conditional inference approach to testing his model but never implemented it because it involves the calculation of a complicated probability. This paper furthers Rasch's approach by (1) providing an efficient Monte Carlo methodology for accurately approximating the required probability and (2) illustrating the usefulness…
Descriptors: Testing Problems, Probability, Methods, Testing
Previous Page | Next Page »
Pages: 1 | 2
Direct link
