NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Qian, Jiahe – ETS Research Report Series, 2017
The variance formula derived for a two-stage sampling design without replacement employs the joint inclusion probabilities in the first-stage selection of clusters. One of the difficulties encountered in data analysis is the lack of information about such joint inclusion probabilities. One way to solve this issue is by applying Hájek's…
Descriptors: Mathematical Formulas, Computation, Sampling, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Dong, Nianbo – American Journal of Evaluation, 2015
Researchers have become increasingly interested in programs' main and interaction effects of two variables (A and B, e.g., two treatment variables or one treatment variable and one moderator) on outcomes. A challenge for estimating main and interaction effects is to eliminate selection bias across A-by-B groups. I introduce Rubin's causal model to…
Descriptors: Probability, Statistical Analysis, Research Design, Causal Models
Apaloo, Francis – Online Submission, 2013
A key issue in quasi-experimental studies and also with many evaluations which required a treatment effects (i.e. a control or experimental group) design is selection bias (Shadish el at 2002). Selection bias refers to the selection of individuals, groups or data for analysis such that proper randomization is not achieved, thereby ensuring that…
Descriptors: Quasiexperimental Design, Probability, Scores, Least Squares Statistics
Dong, Nianbo – Society for Research on Educational Effectiveness, 2011
The purpose of this study is through Monte Carlo simulation to compare several propensity score methods in approximating factorial experimental design and identify best approaches in reducing bias and mean square error of parameter estimates of the main and interaction effects of two factors. Previous studies focused more on unbiased estimates of…
Descriptors: Research Design, Probability, Monte Carlo Methods, Simulation