NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2022
Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate…
Descriptors: Patients, Medical Research, Comparative Analysis, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yonggang; Zheng, Qiujie; Quinn, Daniel – Journal of Statistics and Data Science Education, 2023
We present an instructional approach to teaching causal inference using Bayesian networks and "do"-Calculus, which requires less prerequisite knowledge of statistics than existing approaches and can be consistently implemented in beginner to advanced levels courses. Moreover, this approach aims to address the central question in causal…
Descriptors: Bayesian Statistics, Learning Motivation, Calculus, Advanced Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Van Gestel, Leen; De Laet, Tinne; Di Lello, Enrico; Bruyninckx, Herman; Molenaers, Guy; Van Campenhout, Anja; Aertbelien, Erwin; Schwartz, Mike; Wambacq, Hans; De Cock, Paul; Desloovere, Kaat – Research in Developmental Disabilities: A Multidisciplinary Journal, 2011
Three-dimensional gait analysis (3DGA) generates a wealth of highly variable data. Gait classifications help to reduce, simplify and interpret this vast amount of 3DGA data and thereby assist and facilitate clinical decision making in the treatment of CP. CP gait is often a mix of several clinically accepted distinct gait patterns. Therefore,…
Descriptors: Cerebral Palsy, Psychomotor Skills, Classification, Bayesian Statistics
Zhu, Shizhuo – ProQuest LLC, 2010
Clinical decision-making is challenging mainly because of two factors: (1) patient conditions are often complicated with partial and changing information; (2) people have cognitive biases in their decision-making and information-seeking. Consequentially, misdiagnoses and ineffective use of resources may happen. To better support clinical…
Descriptors: Medical Evaluation, Clinical Diagnosis, Decision Making, Bayesian Statistics