NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 68 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Richard Breen; John Ermisch – Sociological Methods & Research, 2024
We consider the problem of bias arising from conditioning on a post-outcome collider. We illustrate this with reference to Elwert and Winship (2014) but we go beyond their study to investigate the extent to which inverse probability weighting might offer solutions. We use linear models to derive expressions for the bias arising in different kinds…
Descriptors: Probability, Statistical Bias, Weighted Scores, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Aimel Zafar; Manzoor Khan; Muhammad Yousaf – Measurement: Interdisciplinary Research and Perspectives, 2024
Subjects with initially extreme observations upon remeasurement are found closer to the population mean. This tendency of observations toward the mean is called regression to the mean (RTM) and can make natural variation in repeated data look like real change. Studies, where subjects are selected on a baseline criterion, should be guarded against…
Descriptors: Measurement, Regression (Statistics), Statistical Distributions, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Experimental Education, 2022
Experiments in psychology or education often use logistic regression models (LRMs) when analyzing binary outcomes. However, a challenge with LRMs is that results are generally difficult to understand. We present alternatives to LRMs in the analysis of experiments and discuss the linear probability model, the log-binomial model, and the modified…
Descriptors: Regression (Statistics), Monte Carlo Methods, Probability, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Kelter, Riko – Measurement: Interdisciplinary Research and Perspectives, 2020
Survival analysis is an important analytic method in the social and medical sciences. Also known under the name time-to-event analysis, this method provides parameter estimation and model fitting commonly conducted via maximum-likelihood. Bayesian survival analysis offers multiple advantages over the frequentist approach for measurement…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Programming Languages, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Clemens Draxler; Andreas Kurz; Can Gürer; Jan Philipp Nolte – Journal of Educational and Behavioral Statistics, 2024
A modified and improved inductive inferential approach to evaluate item discriminations in a conditional maximum likelihood and Rasch modeling framework is suggested. The new approach involves the derivation of four hypothesis tests. It implies a linear restriction of the assumed set of probability distributions in the classical approach that…
Descriptors: Inferences, Test Items, Item Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yan; Kim, Eunsook; Joo, Seang-Hwane; Chun, Seokjoon; Alamri, Abeer; Lee, Philseok; Stark, Stephen – Journal of Experimental Education, 2022
Multilevel latent class analysis (MLCA) has been increasingly used to investigate unobserved population heterogeneity while taking into account data dependency. Nonparametric MLCA has gained much popularity due to the advantage of classifying both individuals and clusters into latent classes. This study demonstrated the need to relax the…
Descriptors: Nonparametric Statistics, Hierarchical Linear Modeling, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Experimental Education, 2018
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
Descriptors: Hierarchical Linear Modeling, Least Squares Statistics, Regression (Statistics), Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Batley, Prathiba Natesan; Minka, Tom; Hedges, Larry Vernon – Grantee Submission, 2020
Immediacy is one of the necessary criteria to show strong evidence of treatment effect in single case experimental designs (SCEDs). With the exception of Natesan and Hedges (2017) no inferential statistical tool has been used to demonstrate or quantify it until now. We investigate and quantify immediacy by treating the change-points between the…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Statistical Inference, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Šedivá, Blanka – International Journal for Technology in Mathematics Education, 2019
The Monte Carlo method is one of the basic simulation statistical methods which can be used both to demonstrate basic probability and statistical concepts as well as to analyse the behaviour stochastic models. The introduction part of the article provides a brief description of the Monte Carlo method. The main part of the article is concentrated…
Descriptors: Simulation, Monte Carlo Methods, Teaching Methods, Mathematics Instruction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5