NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models
Tang, Steven; Gogel, Hannah; McBride, Elizabeth; Pardos, Zachary A. – International Educational Data Mining Society, 2015
Online adaptive tutoring systems are increasingly being used in classrooms as a way to provide guided learning for students. Such tutors have the potential to provide tailored feedback based on specific student needs and misunderstandings. Bayesian knowledge tracing (BKT) is used to model student knowledge when knowledge is assumed to be changing…
Descriptors: Intelligent Tutoring Systems, Difficulty Level, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Goodman, Noah D.; Ullman, Tomer D.; Tenenbaum, Joshua B. – Psychological Review, 2011
The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be…
Descriptors: Causal Models, Logical Thinking, Cognitive Development, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Brady, Timothy F.; Konkle, Talia; Alvarez, George A. – Journal of Experimental Psychology: General, 2009
The information that individuals can hold in working memory is quite limited, but researchers have typically studied this capacity using simple objects or letter strings with no associations between them. However, in the real world there are strong associations and regularities in the input. In an information theoretic sense, regularities…
Descriptors: Short Term Memory, Memorization, Probability, Organizations (Groups)
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Christian, Brian R.; Kalish, Michael L. – Cognitive Science, 2008
Many of the problems studied in cognitive science are inductive problems, requiring people to evaluate hypotheses in the light of data. The key to solving these problems successfully is having the right inductive biases--assumptions about the world that make it possible to choose between hypotheses that are equally consistent with the observed…
Descriptors: Logical Thinking, Bias, Identification, Research Methodology
Peer reviewed Peer reviewed
Wolter, David G.; Earl, Robert W. – Psychometrika, 1972
Descriptors: Bayesian Statistics, Learning, Mathematical Models, Probability
Mislevy, Robert J.; Gitomer, Drew H. – 1995
Probability-based inference in complex networks of interdependent variables is an active topic in statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, and medical diagnosis. This paper concerns the role of Bayesian inference networks for updating student models in intelligent tutoring…
Descriptors: Bayesian Statistics, Clinical Diagnosis, Educational Theories, Hydraulics
Mislevy, Robert J. – 1994
Recent developments in cognitive psychology suggest models for knowledge and learning that often fall outside the realm of standard test theory. This paper concerns probability-based inference in terms of such models. The essential idea is to define a space of "student models"--simplified characterizations of students' knowledge, skill,…
Descriptors: Bayesian Statistics, Cognitive Processes, Cognitive Psychology, Educational Diagnosis
Mislevy, Robert J.; Wilson, Mark – 1992
Standard item response theory (IRT) models posit latent variables to account for regularities in students' performance on test items. They can accommodate learning only if the expected changes in performance are smooth, and, in an appropriate metric, uniform over items. Wilson's "Saltus" model extends the ideas of IRT to development that…
Descriptors: Bayesian Statistics, Change, Development, Item Response Theory