NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Clemens Draxler; Andreas Kurz; Can Gürer; Jan Philipp Nolte – Journal of Educational and Behavioral Statistics, 2024
A modified and improved inductive inferential approach to evaluate item discriminations in a conditional maximum likelihood and Rasch modeling framework is suggested. The new approach involves the derivation of four hypothesis tests. It implies a linear restriction of the assumed set of probability distributions in the classical approach that…
Descriptors: Inferences, Test Items, Item Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Meiser, Thorsten; Rummel, Jan; Fleig, Hanna – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2018
Pseudocontingencies are inferences about correlations in the environment that are formed on the basis of statistical regularities like skewed base rates or varying base rates across environmental contexts. Previous research has demonstrated that pseudocontingencies provide a pervasive mechanism of inductive inference in numerous social judgment…
Descriptors: Inferences, Correlation, Decision Making, Probability
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Iliopoulos, G.; Kateri, M.; Ntzoufras, I. – Psychometrika, 2009
Association models constitute an attractive alternative to the usual log-linear models for modeling the dependence between classification variables. They impose special structure on the underlying association by assigning scores on the levels of each classification variable, which can be fixed or parametric. Under the general row-column (RC)…
Descriptors: Markov Processes, Classification, Bayesian Statistics, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Gershman, Samuel J.; Blei, David M.; Niv, Yael – Psychological Review, 2010
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…
Descriptors: Conditioning, Statistical Inference, Inferences, Bayesian Statistics