NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P. – Research Synthesis Methods, 2016
Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…
Descriptors: Bayesian Statistics, Meta Analysis, Outcomes of Treatment, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel – Psychometrika, 2011
We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…
Descriptors: Identification, Probability, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Chater, Nick; Brown, Gordon D. A. – Cognitive Science, 2008
The remarkable successes of the physical sciences have been built on highly general quantitative laws, which serve as the basis for understanding an enormous variety of specific physical systems. How far is it possible to construct universal principles in the cognitive sciences, in terms of which specific aspects of perception, memory, or decision…
Descriptors: Sciences, Scientific Principles, Models, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Christian, Brian R.; Kalish, Michael L. – Cognitive Science, 2008
Many of the problems studied in cognitive science are inductive problems, requiring people to evaluate hypotheses in the light of data. The key to solving these problems successfully is having the right inductive biases--assumptions about the world that make it possible to choose between hypotheses that are equally consistent with the observed…
Descriptors: Logical Thinking, Bias, Identification, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Shiffrin, Richard M.; Lee, Michael D.; Kim, Woojae; Wagenmakers, Eric-Jan – Cognitive Science, 2008
This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues…
Descriptors: Bayesian Statistics, Generalization, Sciences, Models