Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 5 |
Descriptor
| Bayesian Statistics | 6 |
| Difficulty Level | 6 |
| Probability | 6 |
| Item Response Theory | 3 |
| Models | 3 |
| Test Items | 3 |
| Data Analysis | 2 |
| Factor Analysis | 2 |
| Simulation | 2 |
| Algorithms | 1 |
| At Risk Students | 1 |
| More ▼ | |
Source
| Developmental Science | 1 |
| Educational and Psychological… | 1 |
| Interactive Learning… | 1 |
| International Educational… | 1 |
| Measurement:… | 1 |
Author
Publication Type
| Reports - Research | 5 |
| Journal Articles | 4 |
| Speeches/Meeting Papers | 2 |
| Reports - Evaluative | 1 |
Education Level
Audience
Location
| Massachusetts (Boston) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Xing, Wanli; Pei, Bo; Li, Shan; Chen, Guanhua; Xie, Charles – Interactive Learning Environments, 2023
Engineering design plays an important role in education. However, due to its open nature and complexity, providing timely support to students has been challenging using the traditional assessment methods. This study takes an initial step to employ learning analytics to build performance prediction models to help struggling students. It allows…
Descriptors: Learning Analytics, Engineering Education, Prediction, Design
Marcoulides, Katerina M. – Measurement: Interdisciplinary Research and Perspectives, 2018
This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Difficulty Level
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
Tang, Steven; Gogel, Hannah; McBride, Elizabeth; Pardos, Zachary A. – International Educational Data Mining Society, 2015
Online adaptive tutoring systems are increasingly being used in classrooms as a way to provide guided learning for students. Such tutors have the potential to provide tailored feedback based on specific student needs and misunderstandings. Bayesian knowledge tracing (BKT) is used to model student knowledge when knowledge is assumed to be changing…
Descriptors: Intelligent Tutoring Systems, Difficulty Level, Bayesian Statistics, Models
Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard – Developmental Science, 2014
Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive…
Descriptors: Infants, Eye Movements, Infant Behavior, Cognitive Development
Abdel-fattah, Abdel-fattah A. – 1992
A scaling procedure is proposed, based on item response theory (IRT), to fit non-hierarchical test structure as well. The binary scores of a test of English were used for calculating the probabilities of answering each item correctly. The probability matrix was factor analyzed, and the difficulty intervals or estimates corresponding to the factors…
Descriptors: Bayesian Statistics, Difficulty Level, English, Estimation (Mathematics)

Peer reviewed
Direct link
