NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 77 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ava Greenwood; Sara Davies; Timothy J. McIntyre – Australian Mathematics Education Journal, 2023
This article is motivated by the importance of developing statistically literate students. The authors present a selection of problems that could be used to motivate student interest in probability as well as providing additional depth to the curriculum when used alongside traditional resources. The solutions presented utilise natural frequencies…
Descriptors: Probability, Mathematics Instruction, Teaching Methods, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Powell, Marvin G.; Hull, Darrell M.; Beaujean, A. Alexander – Journal of Experimental Education, 2020
Randomized controlled trials are not always feasible in educational research, so researchers must use alternative methods to study treatment effects. Propensity score matching is one such method for observational studies that has shown considerable growth in popularity since it was first introduced in the early 1980s. This paper outlines the…
Descriptors: Probability, Scores, Observation, Educational Research
W. Jake Thompson – Grantee Submission, 2023
In educational and psychological research, we are often interested in discrete latent states of individuals responding to an assessment (e.g., proficiency or non-proficiency on educational standards, the presence or absence of a psychological disorder). Diagnostic classification models (DCMs; also called cognitive diagnostic models [CDMs]) are a…
Descriptors: Bayesian Statistics, Measurement, Psychometrics, Educational Research
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Pang, Bo; Nijkamp, Erik; Wu, Ying Nian – Journal of Educational and Behavioral Statistics, 2020
This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models…
Descriptors: Artificial Intelligence, Regression (Statistics), Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Xing, Wanli; Pei, Bo; Li, Shan; Chen, Guanhua; Xie, Charles – Interactive Learning Environments, 2023
Engineering design plays an important role in education. However, due to its open nature and complexity, providing timely support to students has been challenging using the traditional assessment methods. This study takes an initial step to employ learning analytics to build performance prediction models to help struggling students. It allows…
Descriptors: Learning Analytics, Engineering Education, Prediction, Design
Peer reviewed Peer reviewed
Direct linkDirect link
D'Attoma, Ida; Camillo, Furio; Clark, M. H. – Journal of Experimental Education, 2019
Propensity score (PS) adjustments have become popular methods used to improve estimates of treatment effects in quasi-experiments. Although researchers continue to develop PS methods, other procedures can also be effective in reducing selection bias. One of these uses clustering to create balanced groups. However, the success of this new method…
Descriptors: Statistical Bias, Regression (Statistics), Probability, Weighted Scores
Peer reviewed Peer reviewed
Direct linkDirect link
González, Beatriz Adriana Rodríguez; Ibarra, Gabriela Noemí Figueroa; Barbosa, Omar Guirette; Muñoz, Héctor Antonio Durán – Canadian Journal of Science, Mathematics and Technology Education, 2022
There is a growing interest in conducting research in educational mathematics in the area of the didactics of probability, where the main difficulties that students have in understanding the concepts related to statistical inference have been revealed. For this research, the concept of the empirical rule and a practical application created by…
Descriptors: Probability, Statistics Education, Teaching Methods, Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Zieffler, Andrew; Justice, Nicola; delMas, Robert; Huberty, Michael D. – Journal of Statistics and Data Science Education, 2021
Statistical modeling continues to gain prominence in the secondary curriculum, and recent recommendations to emphasize data science and computational thinking may soon position algorithmic models into the school curriculum. Many teachers' preparation for and experiences teaching statistical modeling have focused on probabilistic models.…
Descriptors: Mathematical Models, Thinking Skills, Teaching Methods, Statistics Education
Tingir, Seyfullah – ProQuest LLC, 2019
Educators use various statistical techniques to explain relationships between latent and observable variables. One way to model these relationships is to use Bayesian networks as a scoring model. However, adjusting the conditional probability tables (CPT-parameters) to fit a set of observations is still a challenge when using Bayesian networks. A…
Descriptors: Bayesian Statistics, Statistical Analysis, Scoring, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Gerbing, David W. – Journal of Statistics and Data Science Education, 2021
R and Python are commonly used software languages for data analytics. Using these languages as the course software for the introductory course gives students practical skills for applying statistical concepts to data analysis. However, the reliance upon the command line is perceived by the typical nontechnical introductory student as sufficiently…
Descriptors: Statistics Education, Teaching Methods, Introductory Courses, Programming Languages
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6