Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 37 |
| Since 2017 (last 10 years) | 111 |
| Since 2007 (last 20 years) | 261 |
Descriptor
| Bayesian Statistics | 370 |
| Probability | 370 |
| Models | 120 |
| Statistical Analysis | 74 |
| Prediction | 58 |
| Comparative Analysis | 46 |
| Simulation | 46 |
| Statistical Inference | 46 |
| Computation | 42 |
| Inferences | 42 |
| Classification | 41 |
| More ▼ | |
Source
Author
| Mislevy, Robert J. | 9 |
| Griffiths, Thomas L. | 8 |
| Wagenmakers, Eric-Jan | 7 |
| Sinharay, Sandip | 6 |
| Lee, Michael D. | 5 |
| Tenenbaum, Joshua B. | 5 |
| Gelman, Andrew | 4 |
| Johnson, Matthew S. | 4 |
| Levy, Roy | 4 |
| Satake, Eiki | 4 |
| Brown, Scott D. | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 11 |
| Teachers | 4 |
| Practitioners | 3 |
| Students | 1 |
Location
| Australia | 8 |
| Canada | 4 |
| Brazil | 2 |
| California | 2 |
| France | 2 |
| Spain | 2 |
| United Kingdom (England) | 2 |
| California (Santa Barbara) | 1 |
| Chile | 1 |
| Europe | 1 |
| Germany | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Berg, Arthur – Teaching Statistics: An International Journal for Teachers, 2021
The topic of Bayesian updating is explored using standard and non-standard dice as an intuitive and motivating model. Details of calculating posterior probabilities for a discrete distribution are provided, offering a different view to P-values. This article also includes the stars and bars counting technique, a powerful method of counting that is…
Descriptors: Bayesian Statistics, Teaching Methods, Statistics Education, Intuition
John Ermisch – Sociological Methods & Research, 2025
Empirical analysis of variation in demographic events within the population is facilitated by using longitudinal survey data because of the richness of covariate measures in such data, but there is wave-on-wave dropout. When attrition is related to the event, it precludes consistent estimation of the impacts of covariates on the event and on event…
Descriptors: Attrition (Research Studies), Longitudinal Studies, Surveys, Statistical Analysis
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2022
Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate…
Descriptors: Patients, Medical Research, Comparative Analysis, Outcomes of Treatment
Ava Greenwood; Sara Davies; Timothy J. McIntyre – Australian Mathematics Education Journal, 2023
This article is motivated by the importance of developing statistically literate students. The authors present a selection of problems that could be used to motivate student interest in probability as well as providing additional depth to the curriculum when used alongside traditional resources. The solutions presented utilise natural frequencies…
Descriptors: Probability, Mathematics Instruction, Teaching Methods, Statistics Education
Frank Wang – Numeracy, 2021
In late November 2020, there was a flurry of media coverage of two companies' claims of 95% efficacy rates of newly developed COVID-19 vaccines, but information about the confidence interval was not reported. This paper presents a way of teaching the concept of hypothesis testing and the construction of confidence intervals using numbers announced…
Descriptors: COVID-19, Pandemics, Immunization Programs, Hypothesis Testing
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Starns, Jeffrey J.; Cohen, Andrew L.; Vargas, John M.; Lougee-Rodriguez, William F. – Journal of Statistics and Data Science Education, 2021
We developed and tested strategies for using spatial representations to help students understand core probability concepts, including the multiplication rule for computing a joint probability from a marginal and conditional probability, interpreting an odds value as the ratio of two probabilities, and Bayesian inference. The general goal of these…
Descriptors: Active Learning, Probability, Statistics Education, Concept Formation
Ong, Jia Hoong; Liu, Fang – Journal of Autism and Developmental Disorders, 2023
According to Bayesian/predictive coding models of autism, autistic individuals may have difficulties learning probabilistic cue-outcome associations, but empirical evidence has been mixed. The target cues used in previous studies were often straightforward and might not reflect real-life learning of such associations which requires learners to…
Descriptors: Autism Spectrum Disorders, Probability, Cues, Associative Learning
Denis Shchepakin; Sreecharan Sankaranarayanan; Dawn Zimmaro – International Educational Data Mining Society, 2024
Bayesian Knowledge Tracing (BKT) is a probabilistic model of a learner's state of mastery for a knowledge component. The learner's state is a "hidden" binary variable updated based on the correctness of the learner's responses to questions corresponding to that knowledge component. The parameters used for this update are inferred/learned…
Descriptors: Algorithms, Bayesian Statistics, Probability, Artificial Intelligence
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Mulder, J.; Raftery, A. E. – Sociological Methods & Research, 2022
The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC, however, is not suitable for evaluating models with order constraints on the parameters of interest. This article explores two extensions of the BIC for evaluating order-constrained models, one where a…
Descriptors: Models, Social Science Research, Programming Languages, Bayesian Statistics
Alari, Krissina M.; Kim, Steven B.; Wand, Jeffrey O. – Measurement in Physical Education and Exercise Science, 2021
There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two approaches produce similar estimations and predictions in large-sample studies, their interpretations are different. Bland Altman analysis is a statistical method that is widely used for comparing two methods of measurement. It was originally…
Descriptors: Statistical Analysis, Bayesian Statistics, Measurement, Probability

Peer reviewed
Direct link
