NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fu, Jianbin; Zapata, Diego; Mavronikolas, Elia – ETS Research Report Series, 2014
Simulation or game-based assessments produce outcome data and process data. In this article, some statistical models that can potentially be used to analyze data from simulation or game-based assessments are introduced. Specifically, cognitive diagnostic models that can be used to estimate latent skills from outcome data so as to scale these…
Descriptors: Simulation, Evaluation Methods, Games, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moses, Tim; Oh, Hyeonjoo J. – ETS Research Report Series, 2009
Pseudo Bayes probability estimates are weighted averages of raw and modeled probabilities; these estimates have been studied primarily in nonpsychometric contexts. The purpose of this study was to evaluate pseudo Bayes probability estimates as applied to the estimation of psychometric test score distributions and chained equipercentile equating…
Descriptors: Bayesian Statistics, Computation, Equated Scores, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rock, Donald A. – ETS Research Report Series, 2012
This paper provides a history of ETS's role in developing assessment instruments and psychometric procedures for measuring change in large-scale national assessments funded by the Longitudinal Studies branch of the National Center for Education Statistics. It documents the innovations developed during more than 30 years of working with…
Descriptors: Models, Educational Change, Longitudinal Studies, Educational Development
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli – ETS Research Report Series, 2006
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task that may be dependent. This paper explores four design patterns for modeling locally dependent observations from the same task: (1) No context--Ignore dependence among observables; (2) Compensatory…
Descriptors: Bayesian Statistics, Networks, Models, Design