Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 7 |
Descriptor
| Bayesian Statistics | 8 |
| Probability | 8 |
| Inferences | 3 |
| Models | 3 |
| Prediction | 3 |
| Statistical Inference | 3 |
| Bias | 2 |
| Causal Models | 2 |
| Cognitive Processes | 2 |
| Cognitive Psychology | 2 |
| Comparative Analysis | 2 |
| More ▼ | |
Source
| Cognitive Science | 3 |
| Cognition | 2 |
| Cognitive Psychology | 1 |
| Journal of Experimental… | 1 |
| Psychological Bulletin | 1 |
Author
| Griffiths, Thomas L. | 8 |
| Tenenbaum, Joshua B. | 3 |
| Chater, Nick | 2 |
| Kalish, Michael L. | 2 |
| Christian, Brian R. | 1 |
| Horng, Andy | 1 |
| Hsu, Anne S. | 1 |
| Norris, Dennis | 1 |
| Perfors, Amy | 1 |
| Pouget, Alexandre | 1 |
| Williams, Joseph J. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 8 |
| Reports - Research | 4 |
| Reports - Evaluative | 3 |
| Opinion Papers | 2 |
Education Level
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Griffiths, Thomas L.; Chater, Nick; Norris, Dennis; Pouget, Alexandre – Psychological Bulletin, 2012
Bowers and Davis (2012) criticize Bayesian modelers for telling "just so" stories about cognition and neuroscience. Their criticisms are weakened by not giving an accurate characterization of the motivation behind Bayesian modeling or the ways in which Bayesian models are used and by not evaluating this theoretical framework against specific…
Descriptors: Bayesian Statistics, Psychology, Brain, Models
Williams, Joseph J.; Griffiths, Thomas L. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2013
Errors in detecting randomness are often explained in terms of biases and misconceptions. We propose and provide evidence for an account that characterizes the contribution of the inherent statistical difficulty of the task. Our account is based on a Bayesian statistical analysis, focusing on the fact that a random process is a special case of…
Descriptors: Experimental Psychology, Bias, Misconceptions, Statistical Analysis
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei – Cognition, 2011
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…
Descriptors: Bayesian Statistics, Cognitive Psychology, Inferences, Cognitive Development
Griffiths, Thomas L.; Christian, Brian R.; Kalish, Michael L. – Cognitive Science, 2008
Many of the problems studied in cognitive science are inductive problems, requiring people to evaluate hypotheses in the light of data. The key to solving these problems successfully is having the right inductive biases--assumptions about the world that make it possible to choose between hypotheses that are equally consistent with the observed…
Descriptors: Logical Thinking, Bias, Identification, Research Methodology
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognition, 2007
People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…
Descriptors: Probability, Statistical Inference, Bayesian Statistics, Theories
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognitive Psychology, 2005
We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…
Descriptors: Probability, Logical Thinking, Inferences, Causal Models
Griffiths, Thomas L.; Kalish, Michael L. – Cognitive Science, 2007
Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…
Descriptors: Probability, Diachronic Linguistics, Statistical Inference, Language Universals

Peer reviewed
Direct link
