NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shear, Benjamin R.; Zumbo, Bruno D. – Educational and Psychological Measurement, 2013
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Descriptors: Error of Measurement, Multiple Regression Analysis, Data Analysis, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…
Descriptors: Correlation, Models, Vertical Organization, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Curran-Everett, Douglas – Advances in Physiology Education, 2011
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive…
Descriptors: Regression (Statistics), Statistics, Models, Correlation
Vasu, Ellen S.; Elmore, Patricia B. – 1975
The effects of the violation of the assumption of normality coupled with the condition of multicollinearity upon the outcome of testing the hypothesis Beta equals zero in the two-predictor regression equation is investigated. A monte carlo approach was utilized in which three differenct distributions were sampled for two sample sizes over…
Descriptors: Correlation, Error of Measurement, Factor Structure, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Long, Jeffrey D. – Psychological Methods, 2005
Often quantitative data in the social sciences have only ordinal justification. Problems of interpretation can arise when least squares multiple regression (LSMR) is used with ordinal data. Two ordinal alternatives are discussed, dominance-based ordinal multiple regression (DOMR) and proportional odds multiple regression. The Q[superscript 2]…
Descriptors: Simulation, Social Science Research, Error of Measurement, Least Squares Statistics