NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sim, Mikyung; Kim, Su-Young; Suh, Youngsuk – Educational and Psychological Measurement, 2022
Mediation models have been widely used in many disciplines to better understand the underlying processes between independent and dependent variables. Despite their popularity and importance, the appropriate sample sizes for estimating those models are not well known. Although several approaches (such as Monte Carlo methods) exist, applied…
Descriptors: Sample Size, Statistical Analysis, Predictor Variables, Path Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Eunsook; von der Embse, Nathaniel – Educational and Psychological Measurement, 2021
Although collecting data from multiple informants is highly recommended, methods to model the congruence and incongruence between informants are limited. Bauer and colleagues suggested the trifactor model that decomposes the variances into common factor, informant perspective factors, and item-specific factors. This study extends their work to the…
Descriptors: Probability, Models, Statistical Analysis, Congruence (Psychology)
Peer reviewed Peer reviewed
Direct linkDirect link
Sorjonen, Kimmo; Melin, Bo; Ingre, Michael – Educational and Psychological Measurement, 2019
The present simulation study indicates that a method where the regression effect of a predictor (X) on an outcome at follow-up (Y1) is calculated while adjusting for the outcome at baseline (Y0) can give spurious findings, especially when there is a strong correlation between X and Y0 and when the test-retest correlation between Y0 and Y1 is…
Descriptors: Predictor Variables, Regression (Statistics), Correlation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
No, Unkyung; Hong, Sehee – Educational and Psychological Measurement, 2018
The purpose of the present study is to compare performances of mixture modeling approaches (i.e., one-step approach, three-step maximum-likelihood approach, three-step BCH approach, and LTB approach) based on diverse sample size conditions. To carry out this research, two simulation studies were conducted with two different models, a latent class…
Descriptors: Sample Size, Classification, Comparative Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Educational and Psychological Measurement, 2018
Because error variance alternatively can be considered to be the sum of systematic variance associated with unknown variables and randomness, a tripartite assumption is proposed that total variance in the dependent variable can be partitioned into three variance components. These are variance in the dependent variable that is explained by the…
Descriptors: Statistical Analysis, Correlation, Experiments, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Shear, Benjamin R.; Zumbo, Bruno D. – Educational and Psychological Measurement, 2013
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Descriptors: Error of Measurement, Multiple Regression Analysis, Data Analysis, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Educational and Psychological Measurement, 2006
This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…
Descriptors: Multiple Regression Analysis, Modeling (Psychology), Predictor Variables, Correlation
Peer reviewed Peer reviewed
Williams, John D.; Lindem, Alfred C. – Educational and Psychological Measurement, 1971
Setwise regression analysis is a new technique developed to allow a stepwise solution when the interest is in sets of variables rather than in single variables. (CK)
Descriptors: Computer Programs, Correlation, Multiple Regression Analysis, Predictor Variables
Peer reviewed Peer reviewed
Gocka, Edward F. – Educational and Psychological Measurement, 1974
Focuses on the procedures available for substituting a special predictive coding method for some of the more complex general regression procedures. (Author)
Descriptors: Analysis of Variance, Codification, Correlation, Predictor Variables
Peer reviewed Peer reviewed
Roe, Robert A. – Educational and Psychological Measurement, 1979
Since actual selection can be different from the selection as it is intended, a method is described for clarifying "restriction of range" problems in developing selection/prediction equations. The application of the method is illustrated in a case study. (Author/JKS)
Descriptors: Goodness of Fit, Multiple Regression Analysis, Predictor Variables, Selection
Peer reviewed Peer reviewed
Velicer, Wayne F. – Educational and Psychological Measurement, 1978
A definition of a suppressor variable is presented which is based on the relation of the semipartial correlation to the zero order correlation. Advantages of the definition are given. (Author/JKS)
Descriptors: Correlation, Mathematical Models, Multiple Regression Analysis, Predictor Variables
Peer reviewed Peer reviewed
Schmidt, Frank L. – Educational and Psychological Measurement, 1971
Descriptors: Multiple Regression Analysis, Predictor Variables, Psychology, Raw Scores
Peer reviewed Peer reviewed
Rock, Donald A.; And Others – Educational and Psychological Measurement, 1970
Descriptors: Monte Carlo Methods, Multiple Regression Analysis, Predictive Measurement, Predictor Variables
Peer reviewed Peer reviewed
Borich, Gary D. – Educational and Psychological Measurement, 1971
Descriptors: Computer Programs, Hypothesis Testing, Interaction Process Analysis, Predictor Variables
Previous Page | Next Page ยป
Pages: 1  |  2