NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 121 to 135 of 154 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alshurideh, Muhammad; Al Kurdi, Barween; Salloum, Said A.; Arpaci, Ibrahim; Al-Emran, Mostafa – Interactive Learning Environments, 2023
Despite the plethora of m-learning acceptance studies, few have tackled the importance of examining the actual use of m-learning systems from the lenses of social influence, expectation-confirmation, and satisfaction. Additionally, most of the prior technology adoption literature tends to use the structural equation modeling (SEM) technique in…
Descriptors: Electronic Learning, Prediction, Least Squares Statistics, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Arantes, Janine Aldous – Australian Educational Researcher, 2023
Recent negotiations of 'data' in schools place focus on student assessment and NAPLAN. However, with the rise in artificial intelligence (AI) underpinning educational technology, there is a need to shift focus towards the value of teachers' digital data. By doing so, the broader debate surrounding the implications of these technologies and rights…
Descriptors: Foreign Countries, Elementary Secondary Education, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Odiel Estrada-Molina; Juanjo Mena; Alexander López-Padrón – International Review of Research in Open and Distributed Learning, 2024
No records of systematic reviews focused on deep learning in open learning have been found, although there has been some focus on other areas of machine learning. Through a systematic review, this study aimed to determine the trends, applied computational techniques, and areas of educational use of deep learning in open learning. The PRISMA…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Open Education, Educational Trends
Peer reviewed Peer reviewed
Direct linkDirect link
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Mingying Zheng – ProQuest LLC, 2024
The digital transformation in educational assessment has led to the proliferation of large-scale data, offering unprecedented opportunities to enhance language learning, and testing through machine learning (ML) techniques. Drawing on the extensive data generated by online English language assessments, this dissertation investigates the efficacy…
Descriptors: Artificial Intelligence, Computational Linguistics, Language Tests, English (Second Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Tiffany Wu; Christina Weiland – Society for Research on Educational Effectiveness, 2024
Background/Context: Chronic absenteeism is a serious problem that has been linked to lower academic achievement, diminished socioemotional skills, and an increased likelihood of high school dropout (Allensworth et al., 2021; Gottfried, 2014). As a result, many schools have begun to embrace early warning systems (EWS) as a tool to identify and flag…
Descriptors: Attendance, Early Childhood Education, Intervention, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lang, David; Wang, Alex; Dalal, Nathan; Paepcke, Andreas; Stevens, Mitchell L. – AERA Open, 2022
Committing to a major is a fateful step in an undergraduate education, yet the relationship between courses taken early in an academic career and ultimate major issuance remains little studied at scale. Using transcript data capturing the academic careers of 26,892 undergraduates enrolled at a private university between 2000 and 2020, we describe…
Descriptors: Undergraduate Students, Majors (Students), College Planning, Natural Language Processing
Jennifer Hu – ProQuest LLC, 2023
Language is one of the hallmarks of intelligence, demanding explanation in a theory of human cognition. However, language presents unique practical challenges for quantitative empirical research, making many linguistic theories difficult to test at naturalistic scales. Artificial neural network language models (LMs) provide a new tool for studying…
Descriptors: Linguistic Theory, Computational Linguistics, Models, Language Research
Peer reviewed Peer reviewed
Direct linkDirect link
Anika Alam; A. Brooks Bowden – Society for Research on Educational Effectiveness, 2024
Background: The importance of high school completion for jobs and postsecondary opportunities is well- documented. Combined with federal laws where high school graduation rate is a core performance indicator, school systems and states face pressure to actively monitor and assess high school completion. This proposal employs machine learning…
Descriptors: Dropout Characteristics, Prediction, Artificial Intelligence, At Risk Students
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Sungjin Nam – ProQuest LLC, 2020
This dissertation presents various machine learning applications for predicting different cognitive states of students while they are using a vocabulary tutoring system, DSCoVAR. We conduct four studies, each of which includes a comprehensive analysis of behavioral and linguistic data and provides data-driven evidence for designing personalized…
Descriptors: Vocabulary Development, Intelligent Tutoring Systems, Student Evaluation, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11