Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 50 |
| Since 2017 (last 10 years) | 105 |
| Since 2007 (last 20 years) | 174 |
Descriptor
| Bayesian Statistics | 209 |
| Prediction | 209 |
| Models | 96 |
| Probability | 58 |
| Accuracy | 38 |
| Comparative Analysis | 34 |
| Data Analysis | 29 |
| Academic Achievement | 28 |
| Classification | 25 |
| Intelligent Tutoring Systems | 25 |
| Statistical Analysis | 24 |
| More ▼ | |
Source
Author
| Griffiths, Thomas L. | 9 |
| Chi, Min | 4 |
| David Kaplan | 4 |
| Novick, Melvin R. | 4 |
| Barnes, Tiffany | 3 |
| Foorman, Barbara R. | 3 |
| Kaplan, David | 3 |
| Kjorte Harra | 3 |
| Lee, Michael D. | 3 |
| Mao, Ye | 3 |
| Petscher, Yaacov | 3 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 35 |
| Postsecondary Education | 28 |
| Secondary Education | 19 |
| Elementary Education | 11 |
| Elementary Secondary Education | 8 |
| High Schools | 8 |
| Middle Schools | 8 |
| Grade 8 | 7 |
| Junior High Schools | 7 |
| Grade 4 | 5 |
| Grade 9 | 5 |
| More ▼ | |
Audience
| Researchers | 1 |
Location
| Australia | 4 |
| Florida | 3 |
| Massachusetts | 3 |
| Missouri | 2 |
| Netherlands | 2 |
| North Carolina | 2 |
| Spain | 2 |
| United Kingdom | 2 |
| Arizona | 1 |
| Brazil | 1 |
| California | 1 |
| More ▼ | |
Laws, Policies, & Programs
| Elementary and Secondary… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Nahar, Khaledun; Shova, Boishakhe Islam; Ria, Tahmina; Rashid, Humayara Binte; Islam, A. H. M. Saiful – Education and Information Technologies, 2021
Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the…
Descriptors: Learning Analytics, College Students, Engineering Education, Data Collection
How, Meng-Leong; Hung, Wei Loong David – Education Sciences, 2019
Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students. However, educational stakeholders are required by policy-makers to conduct an independent evaluation of the AI-ALS using a small sample size in a pilot study, before that AI-ALS can be approved…
Descriptors: Stakeholders, Artificial Intelligence, Bayesian Statistics, Probability
Heidemanns, Merlin; Gelman, Andrew; Morris, G. Elliott – Grantee Submission, 2020
During modern general election cycles, information to forecast the electoral outcome is plentiful. So-called fundamentals like economic growth provide information early in the cycle. Trial-heat polls become informative closer to Election Day. Our model builds on (Linzer, 2013) and is implemented in Stan (Team, 2020). We improve on the estimation…
Descriptors: Evaluation, Bayesian Statistics, Elections, Presidents
Cain, Meghan K.; Zhang, Zhiyong – Grantee Submission, 2018
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain under-utilized. This is largely due to the lack of…
Descriptors: Bayesian Statistics, Structural Equation Models, Monte Carlo Methods, Sample Size
Nguyen, Huy; Liew, Chun Wai – International Educational Data Mining Society, 2018
Recent works on Intelligent Tutoring Systems have focused on more complicated knowledge domains, which pose challenges in automated assessment of student performance. In particular, while the system can log every user action and keep track of the student's solution state, it is unable to determine the hidden intermediate steps leading to such…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Data Analysis, Error Patterns
Ossewaarde, Roelant; Jonkers, Roel; Jalvingh, Fedor; Bastiaanse, Roelien – Journal of Speech, Language, and Hearing Research, 2020
Purpose: Corpus analyses of spontaneous language fragments of varying length provide useful insights in the language change caused by brain damage, such as caused by some forms of dementia. Sample size is an important experimental parameter to consider when designing spontaneous language analyses studies. Sample length influences the confidence…
Descriptors: Speech Communication, Dementia, Computational Linguistics, Neurological Impairments
Mao, Ye; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2020
Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and…
Descriptors: Time, Models, Artificial Intelligence, Bayesian Statistics
Ames, Allison J. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian item response theory (IRT) modeling stages include (a) specifying the IRT likelihood model, (b) specifying the parameter prior distributions, (c) obtaining the posterior distribution, and (d) making appropriate inferences. The latter stage, and the focus of this research, includes model criticism. Choice of priors with the posterior…
Descriptors: Bayesian Statistics, Item Response Theory, Statistical Inference, Prediction
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Johnston, Angie M.; Johnson, Samuel G. B.; Koven, Marissa L.; Keil, Frank C. – Developmental Science, 2017
Like scientists, children seek ways to explain causal systems in the world. But are children scientists in the strict Bayesian tradition of maximizing posterior probability? Or do they attend to other explanatory considerations, as laypeople and scientists--such as Einstein--do? Four experiments support the latter possibility. In particular, we…
Descriptors: Young Children, Thinking Skills, Inferences, Bayesian Statistics
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Fernández-López, María; Marcet, Ana; Perea, Manuel – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
In past decades, researchers have conducted a myriad of masked priming lexical decision experiments aimed at unveiling the early processes underlying lexical access. A relatively overlooked question is whether a masked unrelated wordlike/unwordlike prime influences the processing of the target stimuli. If participants apply to the primes the same…
Descriptors: Priming, Decision Making, Language Processing, Bayesian Statistics
Siebrase, Benjamin – ProQuest LLC, 2018
Multilayer perceptron neural networks, Gaussian naive Bayes, and logistic regression classifiers were compared when used to make early predictions regarding one-year college student persistence. Two iterations of each model were built, utilizing a grid search process within 10-fold cross-validation in order to tune model parameters for optimal…
Descriptors: Classification, College Students, Academic Persistence, Bayesian Statistics
Mimis, Mohamed; El Hajji, Mohamed; Es-saady, Youssef; Oueld Guejdi, Abdellah; Douzi, Hassan; Mammass, Driss – Education and Information Technologies, 2019
The educational recommendation system to provide support for academic guidance and adaptive learning has always been an important issue of research for smart education. A bad guidance can give rise to difficulties in further studies and can be extended to school dropout. This paper explores the potential of Educational Data Mining for academic…
Descriptors: Educational Counseling, Guidance, Educational Research, Data Collection
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models

Peer reviewed
Direct link
