Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 50 |
| Since 2017 (last 10 years) | 105 |
| Since 2007 (last 20 years) | 174 |
Descriptor
| Bayesian Statistics | 209 |
| Prediction | 209 |
| Models | 96 |
| Probability | 58 |
| Accuracy | 38 |
| Comparative Analysis | 34 |
| Data Analysis | 29 |
| Academic Achievement | 28 |
| Classification | 25 |
| Intelligent Tutoring Systems | 25 |
| Statistical Analysis | 24 |
| More ▼ | |
Source
Author
| Griffiths, Thomas L. | 9 |
| Chi, Min | 4 |
| David Kaplan | 4 |
| Novick, Melvin R. | 4 |
| Barnes, Tiffany | 3 |
| Foorman, Barbara R. | 3 |
| Kaplan, David | 3 |
| Kjorte Harra | 3 |
| Lee, Michael D. | 3 |
| Mao, Ye | 3 |
| Petscher, Yaacov | 3 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 35 |
| Postsecondary Education | 28 |
| Secondary Education | 19 |
| Elementary Education | 11 |
| Elementary Secondary Education | 8 |
| High Schools | 8 |
| Middle Schools | 8 |
| Grade 8 | 7 |
| Junior High Schools | 7 |
| Grade 4 | 5 |
| Grade 9 | 5 |
| More ▼ | |
Audience
| Researchers | 1 |
Location
| Australia | 4 |
| Florida | 3 |
| Massachusetts | 3 |
| Missouri | 2 |
| Netherlands | 2 |
| North Carolina | 2 |
| Spain | 2 |
| United Kingdom | 2 |
| Arizona | 1 |
| Brazil | 1 |
| California | 1 |
| More ▼ | |
Laws, Policies, & Programs
| Elementary and Secondary… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Merkle, E. C.; Furr, D.; Rabe-Hesketh, S. – Grantee Submission, 2019
Typical Bayesian methods for models with latent variables (or random effects) involve directly sampling the latent variables along with the model parameters. In high-level software code for model definitions (using, e.g., BUGS, JAGS, Stan), the likelihood is therefore specified as conditional on the latent variables. This can lead researchers to…
Descriptors: Bayesian Statistics, Comparative Analysis, Computer Software, Models
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Rezaei, Mohammadsadegh; Bobarshad, Hossein; Badie, Kambiz – Interactive Learning Environments, 2021
The development of information technology and social networks has created new opportunities to access lifelong learning in the form of informal learning. In an informal learning environment, learning takes place via Communities of Practice (CoP). The learning success factors in online CoPs are learners' similarity in learning interests and…
Descriptors: Prediction, Electronic Learning, Communities of Practice, Information Technology
Slater, Stefan; Baker, Ryan – Distance Education, 2019
Considerable attention has been given to methods for knowledge estimation, a category of methods for automatic assessment of a student's degree of skill mastery or knowledge at a specific time. Knowledge estimation is frequently used to make decisions about when a student has reached mastery and is ready to advance to new material, but there has…
Descriptors: Prediction, Mastery Learning, Academic Achievement, Bayesian Statistics
Forthmann, Boris; Förster, Natalie; Souvignier, Elmar – Journal of Intelligence, 2022
Monitoring the progress of student learning is an important part of teachers' data-based decision making. One such tool that can equip teachers with information about students' learning progress throughout the school year and thus facilitate monitoring and instructional decision making is learning progress assessments. In practical contexts and…
Descriptors: Learning Processes, Progress Monitoring, Robustness (Statistics), Bayesian Statistics
Bonifay, Wes; Depaoli, Sarah – Grantee Submission, 2021
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard good-ness-of-fit statistics. Limited-information fit…
Descriptors: Bayesian Statistics, Models, Measurement Techniques, Item Response Theory
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Niessen, A. Susan M.; Meijer, Rob R.; Tendeiro, Jorge N. – Educational Measurement: Issues and Practice, 2019
A longstanding concern about admissions to higher education is the underprediction of female academic performance by admission test scores. One explanation for these findings is selection system bias, that is, not all relevant KSAOs that are related to academic performance and gender are included in the prediction model. One solution to this…
Descriptors: College Admission, High Stakes Tests, Gender Differences, Sampling
Lee, Steven Fong-yi – ProQuest LLC, 2019
In this dissertation I argue that truth-conditional semantics for vague predicates, combined with a Bayesian account of statistical inference incorporating knowledge of truth-conditions of utterances, generates false predictions regarding negations and metalinguistic inference. I thus propose a fundamentally probabilistic semantics for vagueness…
Descriptors: Semantics, Bayesian Statistics, Metalinguistics, Language Usage
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Sinharay, Sandip – Measurement: Interdisciplinary Research and Perspectives, 2018
Producers and consumers of test scores are increasingly concerned about fraudulent behavior before and during the test. There exist several statistical or psychometric methods for detecting fraudulent behavior on tests. This paper provides a review of the Bayesian approaches among them. Four hitherto-unpublished real data examples are provided to…
Descriptors: Ethics, Cheating, Student Behavior, Bayesian Statistics
Peralta, Montserrat; Alarcon, Rosa; Pichara, Karim E.; Mery, Tomas; Cano, Felipe; Bozo, Jorge – IEEE Transactions on Learning Technologies, 2018
Educational resources can be easily found on the Web. Most search engines base their algorithms on a resource's text or popularity, requiring teachers to navigate the results until they find an appropriate resource. This makes searching for resources a tedious and cumbersome task. Specialized repositories contain resources that are annotated with…
Descriptors: Educational Resources, Metadata, Foreign Countries, Bayesian Statistics
Sinharay, Sandip – Grantee Submission, 2018
Producers and consumers of test scores are increasingly concerned about fraudulent behavior before and during the test. There exist several statistical or psychometric methods for detecting fraudulent behavior on tests. This paper provides a review of the Bayesian approaches among them. Four hitherto-unpublished real data examples are provided to…
Descriptors: Ethics, Cheating, Student Behavior, Bayesian Statistics
Pei-Hsuan Chiu – ProQuest LLC, 2018
Evidence of student growth is a primary outcome of interest for educational accountability systems. When three or more years of student test data are available, questions around how students grow and what their predicted growth is can be answered. Given that test scores contain measurement error, this error should be considered in growth and…
Descriptors: Bayesian Statistics, Scores, Error of Measurement, Growth Models

Peer reviewed
Direct link
