NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 16 to 30 of 154 results Save | Export
Jessa Henderson – ProQuest LLC, 2024
Algorithms may be better at prediction than humans in a variety of contexts, but they are not perfect. A deeper understanding of the ways in which educators use and question algorithmic advice within their professional domain is needed. Educators are a particularly unique professional group, in comparison with the other groups studied in the…
Descriptors: Algorithms, Literacy, High School Teachers, Science Teachers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jade Mai Cock; Hugues Saltini; Haoyu Sheng; Riya Ranjan; Richard Davis; Tanja Käser – International Educational Data Mining Society, 2024
Predictive models play a pivotal role in education by aiding learning, teaching, and assessment processes. However, they have the potential to perpetuate educational inequalities through algorithmic biases. This paper investigates how behavioral differences across demographic groups of different sizes propagate through the student success modeling…
Descriptors: Demography, Statistical Bias, Algorithms, Behavior
Hall, Michelle; Lees, Melinda; Serich, Cameron; Hunt, Richard – National Centre for Vocational Education Research (NCVER), 2023
This paper summarises exploratory analysis undertaken to evaluate the effectiveness of using machine learning approaches to calculate projected completion rates for vocational education and training (VET) programs, and compares this with the current approach used at the National Centre for Vocational Education Research (NCVER) -- Markov chains…
Descriptors: Vocational Education, Graduation Rate, Artificial Intelligence, Prediction
Stacey von Winckelmann – ProQuest LLC, 2023
The research problem addressed in this study is that racial bias programmed into predictive algorithm recommendations negatively impacts students in historically underrepresented groups. The purpose of this qualitative descriptive study was to explore the perception of algorithm accuracy among data professionals in higher education and explore the…
Descriptors: Prediction, Algorithms, Racism, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Stacey Lynn von Winckelmann – Information and Learning Sciences, 2023
Purpose: This study aims to explore the perception of algorithm accuracy among data professionals in higher education. Design/methodology/approach: Social justice theory guided the qualitative descriptive study and emphasized four principles: access, participation, equity and human rights. Data collection included eight online open-ended…
Descriptors: Prediction, Algorithms, Racism, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Harikesh Singh; Li-Minn Ang; Dipak Paudyal; Mauricio Acuna; Prashant Kumar Srivastava; Sanjeev Kumar Srivastava – Technology, Knowledge and Learning, 2025
Wildfires pose significant environmental threats in Australia, impacting ecosystems, human lives, and property. This review article provides a comprehensive analysis of various empirical and dynamic wildfire simulators alongside machine learning (ML) techniques employed for wildfire prediction in Australia. The study examines the effectiveness of…
Descriptors: Artificial Intelligence, Computer Software, Computer Simulation, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Félix González-Carrasco; Felipe Espinosa Parra; Izaskun Álvarez-Aguado; Sebastián Ponce Olguín; Vanessa Vega Córdova; Miguel Roselló-Peñaloza – British Journal of Learning Disabilities, 2025
Background: The study focuses on the need to optimise assessment scales for support needs in individuals with intellectual and developmental disabilities. Current scales are often lengthy and redundant, leading to exhaustion and response burden. The goal is to use machine learning techniques, specifically item-reduction methods and selection…
Descriptors: Artificial Intelligence, Intellectual Disability, Developmental Disabilities, Individual Needs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Parian Haghighat; Denisa Gandara; Lulu Kang; Hadis Anahideh – Grantee Submission, 2024
Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque…
Descriptors: Prediction, Learning Analytics, Multivariate Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Jia Zhu; Xiaodong Ma; Changqin Huang – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT) for evaluating students' knowledge is an essential task in personalized education. More and more researchers have devoted themselves to solving KT tasks, e.g., deep knowledge tracing (DKT), which can capture more sophisticated representations of student knowledge. Nonetheless, these techniques ignore the reconstruction of…
Descriptors: Teaching Methods, Knowledge Level, Algorithms, Attribution Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Khoushehgir, Fatemeh; Sulaimany, Sadegh – Education and Information Technologies, 2023
In recent years, the rapid growth of Massive Open Online Courses (MOOCs) has attracted much attention for related research. Besides, one of the main challenges in MOOCs is the high dropout or low completion rate. Early dropout prediction algorithms aim the educational institutes to retain the students for the related course. There are several…
Descriptors: Prediction, Dropout Prevention, MOOCs, Dropout Rate
Peer reviewed Peer reviewed
Direct linkDirect link
Jyoti Prakash Meher; Rajib Mall – IEEE Transactions on Education, 2025
Contribution: This article suggests a novel method for diagnosing a learner's cognitive proficiency using deep neural networks (DNNs) based on her answers to a series of questions. The outcome of the forecast can be used for adaptive assistance. Background: Often a learner spends considerable amounts of time in attempting questions on the concepts…
Descriptors: Cognitive Ability, Assistive Technology, Adaptive Testing, Computer Assisted Testing
Michael Wade Ashby – ProQuest LLC, 2024
Whether machine learning algorithms effectively predict college students' course outcomes using learning management system data is unknown. Identifying students who will have a poor outcome can help institutions plan future budgets and allocate resources to create interventions for underachieving students. Therefore, knowing the effectiveness of…
Descriptors: Artificial Intelligence, Algorithms, Prediction, Learning Management Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11