NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ma, Hua; Huang, Zhuoxuan; Tang, Wensheng; Zhu, Haibin; Zhang, Hongyu; Li, Jingze – IEEE Transactions on Learning Technologies, 2023
To provide intelligent learning guidance for students in e-learning systems, it is necessary to accurately predict their performance in future exams by analyzing score data in past exams. However, existing research has not addressed the uncertain and dynamic features of students' cognitive status, whereas these features are essential for improving…
Descriptors: Prediction, Student Evaluation, Performance, Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Hollylynne S. Lee; Hamid Sanei; Lisa Famularo; Jessica Masters; Laine Bradshaw; Madeline Schellman – Grantee Submission, 2023
Assessing students' conceptions related to independence of events and determining probabilities from a sample space has been the focus of research in probability education for over 40 years. While we know a lot from past studies about predictable ways students may reason with well-known tasks, developing a diagnostic assessment that can be used by…
Descriptors: Probability, Concept Formation, Validity, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Briggs, Derek C.; Circi, Ruhan – International Journal of Testing, 2017
Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…
Descriptors: Artificial Intelligence, Classification, Student Evaluation, Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Ueno, Maomi; Miyazawa, Yoshimitsu – IEEE Transactions on Learning Technologies, 2018
Over the past few decades, many studies conducted in the field of learning science have described that scaffolding plays an important role in human learning. To scaffold a learner efficiently, a teacher should predict how much support a learner must have to complete tasks and then decide the optimal degree of assistance to support the learner's…
Descriptors: Scaffolding (Teaching Technique), Prediction, Probability, Comparative Analysis
Porter, Kristin E.; Balu, Rekha – MDRC, 2016
Education systems are increasingly creating rich, longitudinal data sets with frequent, and even real-time, data updates of many student measures, including daily attendance, homework submissions, and exam scores. These data sets provide an opportunity for district and school staff members to move beyond an indicators-based approach and instead…
Descriptors: Models, Prediction, Statistical Analysis, Elementary Secondary Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
VanDerHeyden, Amanda M. – Exceptional Children, 2011
Perhaps the greatest value of response to intervention (RTI) as a decision framework is that it brings attention to variables (e.g., mastery of prerequisite skills, frequency of instructional corrective feedback, reinforcement schedules for correct responding) that if changed might make a meaningful difference for students (e.g., child rate of…
Descriptors: Feedback (Response), Intervention, Classification, Response to Intervention
Aims, Doug – 1971
A Markov model for predicting performance on criterion-referenced tests is presented,. The model is expressed mathematically as a function of transition matrix, a current state vector, and a future state vector. The matrix is defined in terms of conditional probabilities, i.e., the probability of making a transition to a specific future…
Descriptors: Bayesian Statistics, Criterion Referenced Tests, Decision Making, Mastery Tests
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers