Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Algorithms | 2 |
| Prediction | 2 |
| Science Education | 2 |
| Academic Failure | 1 |
| Artificial Intelligence | 1 |
| At Risk Students | 1 |
| College Science | 1 |
| College Students | 1 |
| Decision Making | 1 |
| Grade Point Average | 1 |
| Grades (Scholastic) | 1 |
| More ▼ | |
Publication Type
| Dissertations/Theses -… | 1 |
| Journal Articles | 1 |
| Reports - Research | 1 |
Education Level
| High Schools | 1 |
| Higher Education | 1 |
| Postsecondary Education | 1 |
| Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jessa Henderson – ProQuest LLC, 2024
Algorithms may be better at prediction than humans in a variety of contexts, but they are not perfect. A deeper understanding of the ways in which educators use and question algorithmic advice within their professional domain is needed. Educators are a particularly unique professional group, in comparison with the other groups studied in the…
Descriptors: Algorithms, Literacy, High School Teachers, Science Teachers
John Pace; John Hansen; John Stewart – Physical Review Physics Education Research, 2024
Machine learning models were constructed to predict student performance in an introductory mechanics class at a large land-grant university in the United States using data from 2061 students. Students were classified as either being at risk of failing the course (earning a D or F) or not at risk (earning an A, B, or C). The models focused on…
Descriptors: Artificial Intelligence, Identification, At Risk Students, Physics

Direct link
Peer reviewed
