Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 6 |
Descriptor
| Learning Analytics | 6 |
| Mastery Learning | 6 |
| Prediction | 6 |
| Models | 4 |
| Academic Achievement | 2 |
| Accuracy | 2 |
| Bayesian Statistics | 2 |
| Online Courses | 2 |
| Probability | 2 |
| Student Behavior | 2 |
| Academic Persistence | 1 |
| More ▼ | |
Author
| Botelho, Anthony F. | 2 |
| Adjei, Seth A. | 1 |
| Beck, Joseph E. | 1 |
| Chen, Fu | 1 |
| Chu, Man-Wai | 1 |
| Croteau, Ethan | 1 |
| Cui, Ying | 1 |
| Doherty, Diana | 1 |
| Gao, Xiaopeng | 1 |
| Gurung, Ashish | 1 |
| Heffernan, Neil T. | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 6 |
| Journal Articles | 3 |
| Speeches/Meeting Papers | 3 |
Education Level
| Secondary Education | 2 |
| High Schools | 1 |
| Higher Education | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
Audience
Location
| China | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Chen, Fu; Cui, Ying; Chu, Man-Wai – International Journal of Artificial Intelligence in Education, 2020
The purpose of this case study is to demonstrate how to utilize machine learning approaches to analyze student process data for validating and informing digital game-based assessments (DGBAs) with an evidence-centered game design (ECgD). The first analysis was conducted to examine whether students' mastery of the overall skill required by the game…
Descriptors: Game Based Learning, Learning Analytics, Design, Evidence Based Practice
Wan, Han; Zhong, Zihao; Tang, Lina; Gao, Xiaopeng – IEEE Transactions on Learning Technologies, 2023
Small private online courses (SPOCs) have influenced teaching and learning in China's higher education. Learning management systems (LMSs) are important components in SPOCs. They can collect various data related to student behavior and support pedagogical interventions. This research used feature engineering and nearest neighbor smoothing models…
Descriptors: Online Courses, Learning Management Systems, Higher Education, Student Behavior
Botelho, Anthony F.; Varatharaj, Ashvini; Patikorn, Thanaporn; Doherty, Diana; Adjei, Seth A.; Beck, Joseph E. – IEEE Transactions on Learning Technologies, 2019
The increased usage of computer-based learning platforms and online tools in classrooms presents new opportunities to not only study the underlying constructs involved in the learning process, but also use this information to identify and aid struggling students. Many learning platforms, particularly those driving or supplementing instruction, are…
Descriptors: Student Attrition, Student Behavior, Early Intervention, Identification

Peer reviewed
Direct link
