Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 10 |
Descriptor
Learning Analytics | 10 |
MOOCs | 10 |
Prediction | 10 |
Models | 4 |
Learning Processes | 3 |
Student Behavior | 3 |
Academic Achievement | 2 |
Computer Software | 2 |
Correlation | 2 |
Dropout Rate | 2 |
Intervention | 2 |
More ▼ |
Source
Author
Qi, Wanxue | 2 |
Xia, Xiaona | 2 |
Baker, Ryan S. | 1 |
Chinsook, Kittipong | 1 |
Feng Zhao | 1 |
Gao, Ming | 1 |
Hanqiang Liu | 1 |
Huang, Yicheng | 1 |
Jansawang, Natchanok | 1 |
Jantakoon, Thada | 1 |
Jia Hao | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 8 |
Reports - Descriptive | 2 |
Information Analyses | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
California (Stanford) | 1 |
China | 1 |
Pennsylvania | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hanqiang Liu; Xiao Chen; Feng Zhao – Education and Information Technologies, 2024
Massive open online courses (MOOCs) have become one of the most popular ways of learning in recent years due to their flexibility and convenience. However, high dropout rate has become a prominent problem that hinders the further development of MOOCs. Therefore, the prediction of student dropouts is the key to further enhance the MOOCs platform.…
Descriptors: MOOCs, Video Technology, Behavior Patterns, Prediction
Xia, Xiaona; Qi, Wanxue – Education and Information Technologies, 2023
MOOCs might be an important organization way to realize the online learning process. Online technology and sharing technology enable MOOCs to realize the adaptive scheduling of learning resources, as well as the independent construction of learning sequences. At the same time, it also generates a large number of complex learning behaviors. How to…
Descriptors: MOOCs, Learning Processes, Learning Analytics, Graphs
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Khajonmote, Withamon; Chinsook, Kittipong; Klintawon, Sununta; Sakulthai, Chaiyan; Leamsakul, Wicha; Jansawang, Natchanok; Jantakoon, Thada – Journal of Education and Learning, 2022
The system architecture of big data in massive open online courses (BD-MOOCs System Architecture) is composed of six components. The first component was comprised of big data tools and technologies such as Hadoop, YARN, HDFS, Spark, Hive, Sqoop, and Flume. The second component was educational data science, which is composed of the following four…
Descriptors: MOOCs, Data Collection, Student Behavior, Computer Software
MOOC Student Dropout Prediction Model Based on Learning Behavior Features and Parameter Optimization
Jin, Cong – Interactive Learning Environments, 2023
Since the advent of massive open online courses (MOOC), it has been the focus of educators and learners around the world, however the high dropout rate of MOOC has had a serious negative impact on its popularity and promotion. How to effectively predict students' dropout status in MOOC for early intervention has become a hot topic in MOOC…
Descriptors: MOOCs, Potential Dropouts, Prediction, Models
Shabnam Ara, S. J.; Tanuja, R.; Manjula, S. H.; Venugopal, K. R. – Journal of Educational Technology Systems, 2023
Learning analytics (LA) is considered a promising field of study as it's helping to improve learning and the context in which it occurs. A learner's performance can be defined as how well students are learning in terms of knowledge and skills development and can be analyzed based on students' outcomes and engagement in the course. We have…
Descriptors: Learning Analytics, Learning Management Systems, Academic Achievement, Prediction
Tong, Yao; Zhan, Zehui – Interactive Technology and Smart Education, 2023
Purpose: The purpose of this study is to set up an evaluation model to predict massive open online courses (MOOC) learning performance by analyzing MOOC learners' online learning behaviors, and comparing three algorithms -- multiple linear regression (MLR), multilayer perceptron (MLP) and classification and regression tree (CART).…
Descriptors: MOOCs, Online Courses, Learning Analytics, Prediction
MOOC Performance Prediction and Analysis via Bayesian Network and Maslow's Hierarchical Needs Theory
Luyu Zhu; Jia Hao; Jianhou Gan – Interactive Learning Environments, 2024
Nowadays, Massive Open Online Courses (MOOC) has been gradually accepted by the public as a new type of education and teaching method. However, due to the lack of timely intervention and guidance from educators, learners' performance is not as effective as it could be. To address this problem, predicting MOOC learners' performance and providing…
Descriptors: MOOCs, Academic Achievement, Prediction, Bayesian Statistics
Zhang, Jingjing; Huang, Yicheng; Gao, Ming – Journal of Learning Analytics, 2022
Network analytics has the potential to examine new behaviour patterns that are often hidden by the complexity of online interactions. One of the varied network analytics approaches and methods, the model of collective attention, takes an ecological system perspective to exploring the dynamic process of participation patterns in online and flexible…
Descriptors: Network Analysis, Video Technology, MOOCs, Attention Control
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities