NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Deho, Oscar Blessed; Zhan, Chen; Li, Jiuyong; Liu, Jixue; Liu, Lin; Duy Le, Thuc – British Journal of Educational Technology, 2022
With the widespread use of learning analytics (LA), ethical concerns about fairness have been raised. Research shows that LA models may be biased against students of certain demographic subgroups. Although fairness has gained significant attention in the broader machine learning (ML) community in the last decade, it is only recently that attention…
Descriptors: Ethics, Learning Analytics, Social Bias, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Bowers, Alex J.; Zhao, Yihan; Ho, Eric – High School Journal, 2022
Research on data use and school Early Warning Systems (EWS) notes a central practice of researchers and practitioners is to search for patterns in student data to predict outcomes so schools can support success when students experience challenges. Yet, the domain lacks a means to visualize the rich longitudinal data that schools collect. Here, we…
Descriptors: Learning Analytics, Visual Aids, Student Records, Longitudinal Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Saqr, Mohammed; López-Pernas, Sonsoles – Journal of Learning Analytics, 2022
There has been extensive research using centrality measures in educational settings. One of the most common lines of such research has tested network centrality measures as indicators of success. The increasing interest in centrality measures has been kindled by the proliferation of learning analytics. Previous works have been dominated by…
Descriptors: Measurement Techniques, Learning Analytics, Data Analysis, Academic Achievement
Filderman, Marissa J.; Toste, Jessica R.; Cooc, North – Assessment for Effective Intervention, 2021
Although national legislation and policy call for the use of student assessment data to support instruction, evidence suggests that teachers lack the knowledge and skills required to effectively use data. Previous studies have demonstrated the potential of training for increasing immediate teacher outcomes (i.e., knowledge, skills, and beliefs),…
Descriptors: Grade 2, Elementary School Teachers, Mathematics Instruction, Learning Analytics