Publication Date
In 2025 | 2 |
Since 2024 | 10 |
Since 2021 (last 5 years) | 20 |
Since 2016 (last 10 years) | 20 |
Since 2006 (last 20 years) | 20 |
Descriptor
Learning Analytics | 20 |
Learning Management Systems | 20 |
Prediction | 20 |
Online Courses | 8 |
Academic Achievement | 7 |
Algorithms | 7 |
Accuracy | 6 |
Artificial Intelligence | 6 |
College Students | 6 |
Learning Processes | 6 |
Models | 6 |
More ▼ |
Source
Author
Adam Sales | 1 |
Angelica Rísquez | 1 |
Bergamin, Per | 1 |
Chaoyang Zhang | 1 |
Cheng Liu | 1 |
Chenglu Li | 1 |
Claire Halpin | 1 |
Comsa, Ioan-Sorin | 1 |
Gao, Xiaopeng | 1 |
Garg, Deepak | 1 |
Gupta, Anika | 1 |
More ▼ |
Publication Type
Journal Articles | 17 |
Reports - Research | 16 |
Information Analyses | 3 |
Speeches/Meeting Papers | 3 |
Reports - Evaluative | 2 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 9 |
Postsecondary Education | 9 |
Secondary Education | 2 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ramaswami, Gomathy; Susnjak, Teo; Mathrani, Anuradha; Umer, Rahila – Technology, Knowledge and Learning, 2023
Learning analytics dashboards (LADs) provide educators and students with a comprehensive snapshot of the learning domain. Visualizations showcasing student learning behavioral patterns can help students gain greater self-awareness of their learning progression, and at the same time assist educators in identifying those students who may be facing…
Descriptors: Prediction, Learning Analytics, Learning Management Systems, Identification
Shabnam Ara, S. J.; Tanuja, R.; Manjula, S. H.; Venugopal, K. R. – Journal of Educational Technology Systems, 2023
Learning analytics (LA) is considered a promising field of study as it's helping to improve learning and the context in which it occurs. A learner's performance can be defined as how well students are learning in terms of knowledge and skills development and can be analyzed based on students' outcomes and engagement in the course. We have…
Descriptors: Learning Analytics, Learning Management Systems, Academic Achievement, Prediction
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Hua Ma; Wen Zhao; Yuqi Tang; Peiji Huang; Haibin Zhu; Wensheng Tang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or…
Descriptors: College Students, Learning Analytics, Learning Management Systems, Academic Achievement
Murad, Dina Fitria; Murad, Silvia Ayunda; Irsan, Muhamad – Journal of Educators Online, 2023
This study discusses the use of an online learning recommendation system as a smart solution related to changing the face-to-face learning process to online. This study uses user-based collaborative filtering, item-based collaborative filtering, and hybrid collaborative filtering. This research was conducted in two stages using the KNN machine…
Descriptors: Online Courses, Grades (Scholastic), Prediction, Context Effect
Sonja Kleter; Uwe Matzat; Rianne Conijn – IEEE Transactions on Learning Technologies, 2024
Much of learning analytics research has focused on factors influencing model generalizability of predictive models for academic performance. The degree of model generalizability across courses may depend on aspects, such as the similarity of the course setup, course material, the student cohort, or the teacher. Which of these contextual factors…
Descriptors: Prediction, Models, Academic Achievement, Learning Analytics
Yangyang Luo; Xibin Han; Chaoyang Zhang – Asia Pacific Education Review, 2024
Learning outcomes can be predicted with machine learning algorithms that assess students' online behavior data. However, there have been few generalized predictive models for a large number of blended courses in different disciplines and in different cohorts. In this study, we examined learning outcomes in terms of learning data in all of the…
Descriptors: Prediction, Learning Management Systems, Blended Learning, Classification
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Jamiu Adekunle Idowu – International Journal of Artificial Intelligence in Education, 2024
This systematic literature review investigates the fairness of machine learning algorithms in educational settings, focusing on recent studies and their proposed solutions to address biases. Applications analyzed include student dropout prediction, performance prediction, forum post classification, and recommender systems. We identify common…
Descriptors: Algorithms, Dropouts, Prediction, Academic Achievement
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
Yuanlan Jiang; Jian-E Peng – Computer Assisted Language Learning, 2025
Language learner engagement, which is receiving increased attention, has predominantly focused on offline classroom contexts, while learner engagement in language Massive Open Online Courses (LMOOCs) remains under-explored. This study was conducted on a College English MOOC with the purpose of examining learner engagement and its relations with…
Descriptors: Learner Engagement, Personal Autonomy, Second Language Learning, Second Language Instruction
Mohd Fazil; Angelica Rísquez; Claire Halpin – Journal of Learning Analytics, 2024
Technology-enhanced learning supported by virtual learning environments (VLEs) facilitates tutors and students. VLE platforms contain a wealth of information that can be used to mine insight regarding students' learning behaviour and relationships between behaviour and academic performance, as well as to model data-driven decision-making. This…
Descriptors: Learning Analytics, Learning Management Systems, Learning Processes, Decision Making
Xia, Xiaona – Interactive Learning Environments, 2023
The interactive learning is a continuous process, which is full of a large number of learning interaction activities. The data generated between learners and learning interaction activities can reflect the online learning behaviors. Through the correlation analysis among learning interaction activities, this paper discusses the potential…
Descriptors: Behavior Patterns, Learning Analytics, Decision Making, Correlation
Jewoong Moon; Sheunghyun Yeo; Seyyed Kazem Banihashem; Omid Noroozi – Journal of Computer Assisted Learning, 2024
Background: Traditionally, understanding students' learning dynamics, collaboration, emotions, and their impact on performance has posed challenges in formative assessment. The complexity of monitoring and assessing these factors have often limited the depth and breadth of insights. Objectives: This study aims to explore the potential of…
Descriptors: Formative Evaluation, Nonverbal Communication, Outcomes of Education, Learning Analytics
Previous Page | Next Page »
Pages: 1 | 2