Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 10 |
| Since 2017 (last 10 years) | 12 |
| Since 2007 (last 20 years) | 12 |
Descriptor
| Dropouts | 12 |
| Learning Analytics | 12 |
| Prediction | 12 |
| Models | 7 |
| Student Characteristics | 6 |
| Academic Achievement | 5 |
| Accuracy | 4 |
| Foreign Countries | 4 |
| Universities | 4 |
| Academic Persistence | 3 |
| Artificial Intelligence | 3 |
| More ▼ | |
Source
Author
| Baker, Ryan S. | 1 |
| Bart Mesuere | 1 |
| Bram De Wever | 1 |
| Brooks, Christopher | 1 |
| Canto, Natalia Gil | 1 |
| Cao, Han | 1 |
| Cardona, Tatiana | 1 |
| Charlotte Van Petegem | 1 |
| Cohausz, Lea | 1 |
| Cudney, Elizabeth A. | 1 |
| Denis Zhidkikh | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 10 |
| Journal Articles | 8 |
| Speeches/Meeting Papers | 4 |
| Information Analyses | 2 |
| Reports - Descriptive | 1 |
Education Level
| Higher Education | 8 |
| Postsecondary Education | 8 |
| High Schools | 1 |
| Secondary Education | 1 |
Audience
Location
| Brazil | 1 |
| California (Berkeley) | 1 |
| Finland | 1 |
| Germany | 1 |
| Morocco | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Khalid Oqaidi; Sarah Aouhassi; Khalifa Mansouri – International Association for Development of the Information Society, 2022
The dropout of students is one of the major obstacles that ruin the improvement of higher education quality. To facilitate the study of students' dropout in Moroccan universities, this paper aims to establish a clustering approach model based on machine learning algorithms to determine Moroccan universities categories. Our objective in this…
Descriptors: Models, Prediction, Dropouts, Learning Analytics
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Jamiu Adekunle Idowu – International Journal of Artificial Intelligence in Education, 2024
This systematic literature review investigates the fairness of machine learning algorithms in educational settings, focusing on recent studies and their proposed solutions to address biases. Applications analyzed include student dropout prediction, performance prediction, forum post classification, and recommender systems. We identify common…
Descriptors: Algorithms, Dropouts, Prediction, Academic Achievement
Prediction of Students' Early Dropout Based on Their Interaction Logs in Online Learning Environment
Mubarak, Ahmed A.; Cao, Han; Zhang, Weizhen – Interactive Learning Environments, 2022
Online learning has become more popular in higher education since it adds convenience and flexibility to students' schedule. But, it has faced difficulties in the retention of the continuity of students and ensure continual growth in course. Dropout is a concerning factor in online course continuity. Therefore, it has sparked great interest among…
Descriptors: Prediction, Dropouts, Interaction, Learning Analytics
Xu, Yinuo; Pardos, Zachary A. – International Educational Data Mining Society, 2023
In studies that generate course recommendations based on similarity, the typical enrollment data used for model training consists only of one record per student-course pair. In this study, we explore and quantify the additional signal present in course transaction data, which includes a more granular account of student administrative interactions…
Descriptors: Semantics, Enrollment Trends, Learning Analytics, STEM Education
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models
Canto, Natalia Gil; de Oliveira, Marcelo Albuquerque; Veroneze, Gabriela de Mattos – European Journal of Educational Research, 2022
The article aims to develop a machine-learning algorithm that can predict student's graduation in the Industrial Engineering course at the Federal University of Amazonas based on their performance data. The methodology makes use of an information package of 364 students with an admission period between 2007 and 2019, considering characteristics…
Descriptors: Engineering Education, Prediction, Graduation, Industrial Arts
Zualkernan, Imran – International Association for Development of the Information Society, 2021
A significant amount of research has gone into predicting student performance and many studies have been conducted to predict why students drop out. A variety of data including digital footprints, socio-economic data, financial data, and psychological aspects have been used to predict student performance at the test, course, or program level.…
Descriptors: Prediction, Engineering Education, Academic Achievement, Dropouts
Cardona, Tatiana; Cudney, Elizabeth A.; Hoerl, Roger; Snyder, Jennifer – Journal of College Student Retention: Research, Theory & Practice, 2023
This study presents a systematic review of the literature on the predicting student retention in higher education through machine learning algorithms based on measures such as dropout risk, attrition risk, and completion risk. A systematic review methodology was employed comprised of review protocol, requirements for study selection, and analysis…
Descriptors: Learning Analytics, Data Analysis, Prediction, Higher Education
Cohausz, Lea – Journal of Educational Data Mining, 2022
Student success and drop-out predictions have gained increased attention in recent years, connected to the hope that by identifying struggling students, it is possible to intervene and provide early help and design programs based on patterns discovered by the models. Though by now many models exist achieving remarkable accuracy-values, models…
Descriptors: Guidelines, Academic Achievement, Dropouts, Prediction
Gardner, Josh; Yang, Yuming; Baker, Ryan S.; Brooks, Christopher – International Educational Data Mining Society, 2019
Replication of machine learning experiments can be a useful tool to evaluate how both "modeling" and "experimental design" contribute to experimental results; however, existing replication efforts focus almost entirely on modeling alone. In this work, we conduct a three-part replication case study of a state-of-the-art LSTM…
Descriptors: Online Courses, Large Group Instruction, Prediction, Models

Peer reviewed
Direct link
