NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lin Li; Namrata Srivastava; Jia Rong; Quanlong Guan; Dragan Gaševic; Guanliang Chen – British Journal of Educational Technology, 2025
The use of predictive analytics powered by machine learning (ML) to model educational data has increasingly been identified to exhibit bias towards marginalized populations, prompting the need for more equitable applications of these techniques. To tackle bias that emerges in training data or models at different stages of the ML modelling…
Descriptors: Bias, Attitude Change, Prediction, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Austin C. Megli; Dayra Fallad-Mendoza; Monica Etsitty-Dorame; Jasmine Desiderio; Yan Chen; Damian Sanchez; Nick Flor; Charlotte N. Gunawardena – American Journal of Distance Education, 2024
Analyzing how participants learn from each other during online forums on discussion boards or social media platforms is often challenging. One of the predominant methods of analyzing such learning is through qualitative content analysis or interaction analysis. The Interaction Analysis Model (IAM), developed by Gunawardena, Lowe and Anderson which…
Descriptors: Learning Processes, Distance Education, Computer Mediated Communication, Social Media
Peer reviewed Peer reviewed
Direct linkDirect link
Jamiu Adekunle Idowu – International Journal of Artificial Intelligence in Education, 2024
This systematic literature review investigates the fairness of machine learning algorithms in educational settings, focusing on recent studies and their proposed solutions to address biases. Applications analyzed include student dropout prediction, performance prediction, forum post classification, and recommender systems. We identify common…
Descriptors: Algorithms, Dropouts, Prediction, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities